近年来,智能电子织物作为未来可穿戴领域的一个重要发展方向备受瞩目,之前报道的一维汗液激发电池(
SAB
)由于其优异的柔韧性、生物相容性和与传统纺织工艺的兼容性等,为满足智能电子织物系统的能源供给需求提供了一条新的途径。然而,人体排汗初始阶段的低功率输出和缓慢低效的激发过程极大地阻碍了其在智能织物电子系统中的应用。
近期,受传统纱线制备方法启发,
西南大学材料与能源学院鲁志松教授、乔琰副教授课题组
开发了一种可大规模制备的芯鞘结构微量汗液激发纱线电池(
SAYB
)。
SAYB
以锌线为阳极、棉纱为隔膜、碳线为阴极连续绕制而成,具有独特的一维线状结构、出色的柔韧性和可洗性。借鉴传统纱线制备方法,
SAYB
易实现大规模连续化生产,可轻松进行弯曲、缠绕、打结、扭转和清洗等。微量汗液即可从不同部位快速激发
SAYB
,实现为小型电子元件稳定供能。
SAYB
与传统纺织工艺兼容,可通过编织、针织和缝纫等方式整合到织物中,形成大面积汗液激发供能面料(
SAEF
)。
SAEF
可制成“夜跑头带”,伴随着夜跑过程中头部汗液的分泌,头带上的灯也随之点亮,可为夜跑爱好者提供安全警示和照明。此外,
SAEF
可进一步通过剪裁和缝纫制成汗液激发供能
T
恤。当人体运动出汗后,
T
恤上被激发的
SAYB
模块可为柔性拉伸运动监测系统供能,实现对运动过程中手臂摆动、呼吸频率等信号的无线传输监测。相关工作以“
Scalable, high-performance, yarn-shaped batteries activated by an ultralow volume of sweat for self-powered sensing textiles
”为题,发表在《
Nano Energy
》(
Nano Energy 109 (2023) 108304
,
10.1016/j.nanoen.2023.108304
)
上。
1.
开发
了一种芯鞘结构微量汗液激发纱线电池
(
SAYB
);
2.
小体积激发:
SAYB
仅需
1
μL
汗液即可在
3 s
内被快速
激发;
3.
相对高性能:
SAYB
的
最大
功率密度为
1.72 mW
cm
−
2
,能量容量为
15.3 mAh
;
4.
柔韧性和可洗性:
SAYB
可经受多达
10000
次弯曲循环、
2800
次
360
°扭转循环以及
20
次洗涤而保持性能无显著变化;
5.
大规模制备:借鉴传统纱线制备方法,
SAYB
实现连续化制备(
60 m
);利用传统纺织技术,
SAYB
被制备成大面积汗液激发供能织物(
SAEF
:
5 m
×
0.5 m
),并通过剪裁和缝纫与柔性拉伸传感织物集成,定制成适于可
穿戴应用的自供能传感
T
恤。
图1 芯鞘结构汗液激发纱线电池的(a)电池结构、(b)工作原理以及(c)潜在应用
图
2
SAYB
制备过程
、形貌展示
以及基本性能。(
a
)
SAYB
大规模连续化制备示意图;(
b
)
SAYB
实物照片;(
c
)锌线阳极(左)、碳线阴极(中)和
SAYB
截面图(右);当
NaCl
溶液浓度从
25 mM
增加到
400 mM
时,
SAYB
的(
d
)极化曲线和(
e
)功率密度曲线以及(
f
)内阻和功率密度峰值与
NaCl
浓度之间的相关性;当
SAYB
长度从
3 cm
增加到
19 cm
时,
SAYB
的(
g
)极化曲线和(
h
)功率密度曲线以及(
i
)内阻和功率峰值与
SAYB
长度之间的相关性。注:图
d
、图
e
和图
f
所用器件长度均为
5 cm
,图
g
、图
h
和图
i
所用
NaCl
浓度为
100 mM
。
图3 SAYB的微量汗液激发特性。(a)SAYB自发芯吸皮肤表面汗液的示意图;(b)亲水和疏水棉纱随时间变化的接触角;(c)亲水和疏水棉纱制备的SAYB被1 μL NaCl溶液激发后的输出电压;(d)连续滴加1 μL NaCl溶液(不同位置),SAYB的输出电压;插图:两个串联的SAYB分别滴加1 μL NaCl溶液点亮LED的照片;(e)连续滴加1、5和10 μL NaCl溶液(不同位置),SAYB的输出电压;(f)1、5和10 μL NaCl溶液激发的SAYB的极化曲线和功率密度曲线;(g)连续滴加10 μL NaCl溶液(同一位置),SAYB的输出电压;(h)5组独立SAYB的最大液体存储体积。注:图c和图d中负载=80 kΩ;图e和图g中负载=80 kΩ;
图4 (a)SAYB分别处于弯曲和伸展状态;(b)SAYB分别处于不同扭转角度;(c)10000次循环弯曲的SAYB的恒电流放电曲线;(d)2800次循环扭转的SAYB的恒电流放电曲线;(e)串联电池组的开路电压;(f)并联电池组的功率密度;(g)20次重复清洗对SAYB开路电压的影响;(h)SAYB在电解液连续供应下的长期恒电流放电曲线;(i)串并联电池组为夜跑头带上LED供能;(j)串并联电池组借助升压器为微型电化学工作站和智能手表充电。
图5 SAYB的大规模制备、大面积电池织物以及供能T恤展示。(a)60 m SAYB纺纱锭;(b)SAYBs分别处于弯曲、缠绕、打结和扭转状态;(c)用SAYBs作为纬线编织汗液激发供能织物(SAEF);(d)5 m × 0.5 m的SAEF;(e)用SAEF定制的供能T恤。
图6 人体可穿戴汗液激发自供能传感系统。(a)汗液激发供能T恤为电子器件供能的穿戴演示;(b)汗液激发供能T恤的正面(织物传感模块)和背面(织物电池模块);(c)自供能传感系统等效电路示意图;(d)传感系统实时监测身穿汗液激发供能T恤志愿者运动时手臂摆动和腹部呼吸频率。
本研究设计了一种可大规模制备的芯鞘结构微量汗液激发纱线电池(
SAYB
),
它有望作为稳定可靠的一维电源助力可穿戴医疗保健和运动监测应用。
西南大学材料与能源学院鲁志松教授与乔琰副教授为共同通讯作者,
2020
级硕士生巨俊和
2019
级博士生肖刚为本文的共同第一作者
。这项工作得到了
“
西南大学创新研究
2035
先导计划(
SWU-XDPY22014
)
”
、国家自然科学基金(
No. 22272130
)、海南省院士工作站以及西南大学生物功能表界面团队
的支持。
原文链接:
https://doi.org/10.1016/j.nanoen.2023.108304
相关进展
西南大学鲁志松教授团队 Adv. Sci.:可编织与大规模制备的纱线基汗液激发电池
广西大学林宝凤团队 ACS AMI:具有抗菌抗氧化和紫外线防护功能的电子皮肤用于湿度/汗液传感
五邑大学于晖课题组《Chem. Eng. J》:可编织、可大面积检测、快速响应、长期稳定监测汗液钾离子的服装用电化学织物传感器
北京师范大学刘楠教授团队 ACS Nano:一体化、生物衍生、透气且汗液稳定的MXene表皮电极用于肌肉诊疗
化学与材料科学原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:chem@chemshow.cn
欢迎专家学者提供化学化工、材料科学与工程产学研方面的稿件至chem@chemshow.cn,并请注明详细联系信息。化学与材料科学®会及时选用推送。