首页 > 行业资讯 > 【智能优化算法-灰狼算法】基于狩猎 (DLH) 搜索策略的灰狼算法求解单目标优化问题附matlab代码

【智能优化算法-灰狼算法】基于狩猎 (DLH) 搜索策略的灰狼算法求解单目标优化问题附matlab代码

时间:2022-07-29 来源: 浏览:

【智能优化算法-灰狼算法】基于狩猎 (DLH) 搜索策略的灰狼算法求解单目标优化问题附matlab代码

天天Matlab 天天Matlab
天天Matlab

TT_Matlab

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,完整matlab代码或者程序定制加qq1575304183。

收录于合集 #智能优化算法及应用 500个

1 内容介绍

Grey wolf optimization (GWO) algorithm is a new emerging algorithm that is based on the social hierarchy of grey wolves as well as their hunting and cooperation strategies. Introduced in 2014, this algorithm has been used by a large number of researchers and designers, such that the number of citations to the original paper exceeded many other algorithms. In a recent study by Niu et al., one of the main drawbacks of this algorithm for optimizing real﹚orld problems was introduced. In summary, they showed that GWO’s performance degrades as the optimal solution of the problem diverges from 0. In this paper, by introducing a straightforward modification to the original GWO algorithm, that is, neglecting its social hierarchy, the authors were able to largely eliminate this defect and open a new perspective for future use of this algorithm. The efficiency of the proposed method was validated by applying it to benchmark and real﹚orld engineering problems.

2 仿真代码

% ___________________________________________________________________% % Grey Wold Optimizer (GWO) source codes version 1.0 % % % % Developed in MATLAB R2011b(7.13) % % % % Author and programmer: Seyedali Mirjalili % % % % e-Mail: % % seyedali.mirjalili@griffithuni.edu.au % % % % Homepage: http://www.alimirjalili.com % % % % Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis % % Grey Wolf Optimizer, Advances in Engineering % % Software , in press, % % DOI: 10.1016/j.advengsoft.2013.12.007 % % % % ___________________________________________________________________% % This function initialize the first population of search agents function Positions=initialization(SearchAgents_no,dim,ub,lb) Boundary_no= size(ub,2); % numnber of boundaries % If the boundaries of all variables are equal and user enter a signle % number for both ub and lb if Boundary_no==1 Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb; end % If each variable has a different lb and ub if Boundary_no>1 for i=1:dim ub_i=ub(i); lb_i=lb(i); Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i; end end

3 运行结果

4 参考文献

[1]唐宏伟. 未知环境下基于智能优化算法的多机器人目标搜索研究[D]. 湖南大学.

[2]崔明朗, 杜海文, 魏政磊,等. 多目标灰狼优化算法的改进策略研究[J]. 计算机工程与应用, 2018, 54(5):9.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。
相关推荐