Water-Soluble Constituents of Cudrania tricuspidata (Carr.) Bur. Water-Soluble Constituents of Cudrania tricuspidata (Carr.) Bur.

Water-Soluble Constituents of Cudrania tricuspidata (Carr.) Bur.

  • 期刊名字:植物学报(英文版)
  • 文件大小:815kb
  • 论文作者:Zong-Ping Zheng,Jing-Yu Liang,
  • 作者单位:Shanghai Research Center for Modernization of Traditional Chinese Medicine,Department of Natural Medicinal Chemistry
  • 更新时间:2020-07-08
  • 下载次数:
论文简介

Journal of Integrative Plant Biology 2006, 48 (8): 996-1000Water-Soluble Constituents of Cudraniatricuspidata (Carr.) Bur.Zong-Ping Zheng',2, Jing-Yu Liang2 and Li-Hong Hu1"(1. Shanghai Research Center tor Modernization of Traditional Chinese Medicine,Shanghai Institute of Materia Medica, Shanghai 201203, China;2. Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China)AbstractIn order to find new structural and biologically active compounds, the constituents of the bark of Cudraniatricuspidata (Carr.) Bur. were investigated and a new 6-p-hydroxybenzyltaxifolin glucoside, namedtricusposide (compound 1), together with 16 known compounds, was isolated by solvent partition, ,macroporous adsorption resin AB-8, silica gel, Sephadex LH-20 chromatography. Using spectroscopicmethods, the structures of the compounds were elucidated as 6-p-hydroxybenzyl taxifolin-7- 0-β-D-gluc0-side (compound 1), dlhydroquerctin-7-O-B-D-glucoside (compound 2), dihydrokaempferol-3-O-B-D-gluco-side (compound 3), dihydroquercetin (compound 4), peonoside (compound 5), sphaerobloside (compound6), quercimeritrin (compound 7), genistein (compound 8), aromadendrin (compound 9), kaempferol(compound 10), genistin (compound 11), 3,4-dlhydroxystyryl alcohol (compound 12), sucrose (compound13), 1,5,6-tetrahydroxyxanthone (compound 14), gericudranin E (compound 15), gericudranin C (compound 16),and orobol (compound 17). Compounds 2-6, 8, 9, 12- -14, and 17 were isolated from this genus for the first time.Key words: Cudrania tricuspidata; flavones; water-soluble fractin.Zheng ZP, Llang JY, Hu LH (2006). Water-soluble constituents of Cudrania tricuspidata (Car,) Bur. J Integr Plant Biol 48(8), 996-1000.www. blackwell-synergy.com; W.jipb.netCudrania tricuspidata (Carr.) Bur. is a deciduous tree dis-16 known compounds (compounds 2-17), identified astrbuted across Korea, China and Japan. Its roots are applied indihydroquerctin-7- 0-β- D-glucoside (compound 2),the clinic for the treatment of digestive apparatus tumor, espe-dihydrokaempferol-3-O-B-D-glucoside (compound 3),cially gastric carcinoma (Zou and Hou 2004), as well as beingdihydroquercetin (compound 4), peonoside (compound 5),used as the Chinese folk medicine "Chuan-po-shi" againstsphaerobioside (compound 6), quercimeritrin (compound 7),gonorrthea, rheumatism, jaundice, boils, scabies, bruising, andgenistein (compound 8), aromadendrin (compound 9),dysmenorthea (JiangsuNew Medical College 2000). Xanthoneskaempferol (compound 10), genistin (compound 11), 3,4-(Fujimoto etal.1984a; Hano et al.1990), flavonoids (Fujimoto etdihydroxystyryl alcohol (compound 12), sucrose (compoundal. 1984b) andbenzenoids (Fujimoto andHano 1985) have been13),1,3,5,6-tetrahydroxy-xanthone (compound 14),isolated from the stem or root bark of C. tricuspidata. However,gericudranin E (compound 15), gericudranin C (compound16),the water-soluble constituents of the bark of C. tricuspidataand orobol (compound 17). The structures of the known com-have not yet been reported. In the present study, we havepounds (compounds 2-17) were identified by comparison ofinvestigated the chemical consituents ofthe water-soluble frac~-their 1H-NMR and 18C-NMR data with those reported in thetion of the bark of C. tricuspidata and have isolated a newliterature. Herein, we repot on the isolation and structural elu-compound, namely tricusposide (compound 1), together withcidati中国煤化工YHCNMHGReceived 8 Oct. 2005 Accepted 21 Dec. 2005Results and Discussion"Author tor correspondence. Tel (Fax);: +86 (0)21 5027 2221; E-mai:.The molecular formula of 6 phydrxy-beneztaxifolinglucoside.Water-Soluble Constituents of Cudrania tricuspidata 997(compound 1) was determined to be C2eH2O1a from the HRESI-ExperimentalMS ([M+Na]" m/z. 595.142 7, calculated 595.139 5). The UVspectrum in methanol (MeOH) showed maximum absorption atGeneral experimental procedures228 and 287 nm. In the 1H-NMR spectrum, two resonances at δ5.01 (1H, d, J= 11.4 Hz, H-2) and 4.57 (1H, d, J= 11.4 Hz, H-3)The UV spectra were obtained on a Shimadzu (Kyoto, Japan)were characteristic of a dihydroflavonol skeleton with trans-UV-2501PC spectrophotometer. Melting points (mp) were de-stereochemistry. The 18C-NMR data also supported thetermined using a X-4 digital micromelting point apparatus anddihyroflavone skeleton (see Experimental). The proton reso-are uncorrected. The 1H-NMR(300MHz) and 13C-NMR(75MHz)nances at 86.90 (1H, brs, H-2) and 6.77 (2H, brs, H-5', and H-spectra were recorded on a Varian Mercury-vx 3006') in the 'H-NMR spectrum suggested the presence of a 1,3,4-spectrometer. Elmer Fourier transform infrared spectroscopytrisubstituent phenyl moiety. Two sets of proton resonances at(ESI-MS) was collected on Bruker Esquire 3000 plus87.12 (2H, d,J= 8.4 Hz, H-3", H-7") and δ6.61 (2H, d,J= 8.4spectrometer in MeOH, and HRESI-MS measurements wereHz, H-4", H-6") displayed typical resonances of p-substitutedcarried out on a BrukerAtex II instrument in MeOH.AlI solventspheny| groups. The 1H-NMR and 18C-NMR data (seeused were of analytical grade (Shanghai Chemical Plant,Experimental) indicated that the sugar moiety was glucose.Shanghai, China). Column chromatography consisted of theThe proton and carbon signals of the anomeric center of glu-fllowing: slicai gel (200 -300 mesh and thin-layer H; Qingdaoose (8H 4.93, 1H, d, J= 6.9 Hz; δc 100.3) suggested aMarine Chemical, Qingdao, China), macroporous adsorptionp-configuration. The 1H-NMR and 13C NMR spectra are closelyresin AB-8 (The Chemical Plant of Nankai University, Tianjin,matched with those of the known compound gericudranin CChina), SephadexLH-2025-100μm(Pharmacia Fine Chemical,(compound 16; Lee et al. 1996), except ftor the carbon signalsStockholm, Sweden), and MCI gel CHP 20P 75-150 μmat C-6, C-7, and C-8. The C-7 was down-field shifted ca. sδ(Mitsubishi Chemical Industries, Tokyo, Japan). Thin-layer chro-1.7, whereas the C-6 and the C-8 were up-field shifted ca. 0δmatography (TLC) was performed using a silica gel (GF2s4;3.7 and 1.5 compared with those of the known compoundYantai Huiyou Silica Gel, Shandong, China),gericudranin C (compound 16), indicating that the sugar moietywas defnitely linked to C-7. Thus, the structure of compound 1Plant materialswas elucidated as 6-p-hydroxybenzyltaxifolin-7-O-B-D-glucoside, and the compound was named tricuspide. The litThe bark of Cudrania tricuspidata (Carr.) Bur. was collected inerature reports that if the chiral center atC-2 and C-3 is 2R, 3A,Nanchuan County, Chongqing City, China, and identified by Si-the Circular Dichroism (CD) spectrum shows a positive CottonRong Yi(The Botanical Guardenof Chongqing).Avoucher speci-effect at 300- 340 nm, whereas if the chiral center at C-2 andmen (2001007) was deposited in the Shanghai Research Cen-C-3is 2S, 3S, the CD spectrum shows a negative Cotton efectter for Modermization of Traditional Chinese Medicine, Shang-at 300 -340 nm (Slade et al.2005). The CD cure of compound 1hai Institute of Materia Medica.showed a positive effect at 345 nm, and a negative effect at296 nm. Thus, the absolute configuration of compound 1 wasExtraction and isolation2R,3R.Compounds 2- -17 were identified by comparing their spectralThe dried and powdered bark (2.0 kg) of the plant was ex-data with reported data or authentic samples. The structurestracted with 70% ethanol (EtOH) three times at 70 °C. Thewere defined as dihydroquerctin-7-O-B-D-glucoside (compound2; Markham et al.1984), dihydrokaempferol-3-O-B-D-glucosideHO、(compound 3; Giuliadoet al.1994), dihydroquercetin (compoundHO,A"OH4; Markham et al. 1978), peonoside (compound 5; Yu et al.0H1992), sphaerobioside (compound 6; Breytenbach 1986),Hquercimertrin (compound 7; Markham et al.1978), genisteinHOov员0(compound 8; Hem et al. 1980), aromadendrin (compound 9;。23 6Giuliado et al. 1994), kaempferol (compound 10; Toru et al.1"6Y3 1[41978), genistin (compound 11; Agerawal 1989), 3,4-dihydroxystylalcohol (compound 12; Nakanishi et al. 1990),中国煤化工sucrose (compound 13), 1,3,5,6-tetrahydroxy-xanthoneMYHCNMHG(compound 14; Frahn and Chaudhur 1979), gericudranin E(compound 15; Lee et al.1995), gericudranin C (compound 16;Lee et al. 1996), and orobol (compound 17; Leite and Gottieb1974). .FIgure 1. Chemical structure of compound 1.998 Joumal of Integrative Plant Biology Vol. 48 No.8 2006residue was suspended in water and then extracted with CHCl.146.0 (C-3), 145.8 (C-4), 115.4 (CH, C-5), 119.7 (CH, C-6),The water layer was evaporated to remove the CHClg under26.5 (CH2, C-1"), 131.3 (C C-2"), 129.7 (2CH, C-3", 7"), 114.9vacuum and was then chromatographed on macroporous ad-(2CH, C-4", 6"), 155.3(C, C-5"), 100.3 (CH, C-1"), 73.4(CH,C-sorption resin AB-8 and eluted with water containing increas-2"), 76.6 (CH, C-3"), 69.7 (CH, C-4"), 77.2 (CH, C-5"), 60.7ing amounts of EtOH(H2O-EtOH, 100:0, 85: 15, 70:30, 5:95)(CH, C-6'"). CD cotton: [0]345 +4 439, [0)2a26 -13 289, [0]22to yield fractions A-D. Fraction D (37.2 9) was separated into+30601.six subfractions using the MCl-gel, (fractions a-f). Fraction a(H20-CH2OH, 1:4) was chromatographed over SephadexLH-Compound 220 with MeOH-H2O (1 : 1) to give compound2 (324 mg). Frac-White powder, C21H22O12; 1H-NMR (in Actone-da) 8: 7.05 (1H, d,tion b (H2O-CH3OH, 3: 7) was separated by silica gel columnJ= 1.5 Hz, H-2), 6.86 (1H, dd, J= 1.5, 8.4 Hz, H-6), 6.17 (1H,chromatography (CC) with CHClg-MeOH (10: 1) to give com-d,J= 1.8 Hz, H-8), 6.15 (1H, d, J= 1.8 Hz, H-6), 5.04 (1H, d,pounds 3 (291 mg) and5(14mg). Fractionc(H2O-CHzOH,2:3)J= 11.4 Hz, H-2), 5.04 (1H,d,J= 7.5Hz, H-1"), 4.40(1H, d,was separated by silica gelCC with agradientmixture ofCHClz-J= 11.8 Hz, H-3), 3.86-3.27 (7H, m, H-2"-6"); 19C-.NMR (inMeOH to give two subfractions (C1 and c2). Subfraction C1Actone-d}) δ: 199.3 (s, C-4), 167.1 (s, C~7), 164.6 (s, C-5),(CHCIlzMeOH, 15: 1) was chromatographed over Sephadex164.2 (s, C-9), 147.2 (s, C-4), 146.3 (s, C-3), 129.7(s, C-1),LH-20 with MeOH-H2O(1 : 1) to give the compound 4 (373 mg).121.1 (d, C-6), 116.2 (d, C-5'), 116.1 (d, C-2), 103.4 (s, C-10),Subfractionc1 (CHCl-MeOH, 8: 1) was chromatographed over101.2 (d, C-1"), 98.3(d, C-6), 97.1 (d, C-8), 85.2 (d, C-2), 73.8Sephadex LH-20 with MeOH-H2O (1 : 1) to give compounds 1(d, C-3), 78.1 (d, C-5"), 77.7 (d, C-3"), 74.6 (d, C-2")。71.0(d,(172 mg), 6 (42 mg), and7 (49 mg). Fractiond (H2O-CHzOH, 1:C-4"), 62.3(t, C-6").1) was chromatographed over Sephadex LH-20 with MeOH-H2O (1 : 1) to give three subfractions (d1-d3). Subfraction d1Compound 3was separated by silica gel CC with CHCl:-MeOH (20: 1)toWhite powder, CrxH20; H-NMR (inActone-d})8: 7.38 (2H, d,give compound 9 (69 mg). Subfraction d2 was separated byJ= 8.7 Hz, H-2', 6), 6.87 (2H, d, J= 8.7 Hz, H-3', 5), 6.17 (1H,silica gel CC with CHCl}-MeOH (15: 1)to give compound11 (6d,J= 1.2 Hz, H-8), 6.14 (1H, d,J= 1.2Hz, H-6), 5.09 (1H, d,mg). Subfraction d2 was separated by silica gel CC with CHCl3-J= 1.171 Hz, H-2), 5.04 (1H, d,J=7.5Hz, H-1"), 4.67 (1H, d,MeOH (10: 1) to give compound 12 (12 mg). Fraction e (H2O-J= 11.7 Hz, H-3), 3.87-3.43 (7H, m, H-2"-6"); 13C-NMR (inCHgOH, 3 : 2) was separated by silica gel CC with a gradientActone-da) 8: 199.1 (s, C-4), 166.8 (s, C-7), 164.1 (s, C-4),mixture of CHClz-MeOH to give three subfractions (e1-e3).163.7 (s, C-5), 158.9 (s, C-9), 130.3 (d, C-3', 5), 128.6 (s, .Subfraction e1 was chromatographed over Sephadex LH-20C-1), 115.9 (d, C-2", 6), 102.9 (s, C-10), 100.8 (d,C-1"), 97.8with MeOH to give compounds 8 (19 mg) and 10 (12 mg). Sub-(d, C-6), 96.5 (d, C-8), 84.4 (d, C-2), 73.1 (d, C-3), 77.7(d, C-5"),fraction e2 was chromatographed over Sephadex LH-20 with77.3 (d, C-3"), 74.1(d, C-2"), 70.6(d, C-4"), 62.0(t, C-6").MeOH to give compound 9 (69 mg). Subfraction e3 waschromatographed over Sephadex LH-20 with MeOH-H20(1 :1)Compound 4to give compounds 13 (58 mg), 14 (20 mg), 15 (10 mg), 16 (108White powder, CisH2O%; 1H-NMR (in Actone-d) 8: 7.05 (1H,d,mg), and fraction e3'. Fraction e3' was separated by silica gelJ= 1.5Hz, H-2), 6.87 (1H, d,J=8.4, 1.5 Hz, H-6'), 6.85 (1H,d,CC with CHClz-MeOH (20: 1) to give compound 17 (18 mg).J= 1.5 Hz, H-5'), 5.97 (1H, d,J= 1.8Hz, H-8) , 5.92 (1H, d,J=1.8Hz, H-6), 4.99(1H,d,J= 11.7 Hz, H-2), 5.04 (1H, d,J=7.5 Hz, H-1"), 4.59 (1H, d,J= 11.7 Hz, H-3); 13C-NMR (inldentificationActone-d6) δ: 198.1 (s, C-4), 168.0 (s, C-7), 164.7 (s, C-5),Compound 1164.0 (s, C-9), 146.5 (s, C-4), 145.7 (s, C-3), 129.5 (s, C-1), .Yellow powder, mp 143 °C, CeHgO%; [x]}B -7.7° (c0.6, CH2OH).120.7 (d, C-6'), 115.7 (d, C-5'), 115.7 (d, C-2), 97.0 (d, C-6),UV ACHOH nm: 228 (loge 4.81), 287 (loge 4.62). 1H-NMR (30096.0 (d, C-8), 84.5 (d, C-2), 73.0 (d, C-3).MHz, in DMSO-dg)8: 12.13(1H, OH-5), 9.11 (2H, OH), 6.61 (2H,d,J= 8.4 Hz, H-3", H-7"), 6.90(1H, s, H-2), 6.77 (2H, s, H-5,Compound 56), 6.61 (2H, d, J=8.4 Hz, H-4", H-6"), 6.25 (1H, s, H-8), 5.63Yellow powder, C2zH3016; 1H-NMR (in DMSO-d) 8: 10.25 (1H,(1H, 0H), 4.98 (1H,d,J= 1.4Hz, H-2), 4.48 (1H,d,J= 11.4Hz,s,O中国煤化工6.89 (2H,0,J=8.7Hz,H-3), 3.57 (2H, s, H-1"), 4.93 (1H, d, J= 6.9 Hz, H-1"), 3.38H-3',; 6.44 (1H, d,J= 1.8Hz,(1H, m,H2"), 4.59 (1H,m, H-3"), 3.76(1H, m, H-4", 3.67 (1H,H-6)TMHC N M H GC-NMR(inDMS0-d)8:m,H5"), 3.29, 3.16(2H, m,H-6'"); 13C-NMR (75 MHz, in DMSO-177.7 (s, C-4), 162.8 (s, C-7), 160.9(s, C-5), 160.2 (s, C-4),da) δ: 83.4 (CH, C-2), 71.9 (CH, C-3), 199.2 (C = 0, C-4), 160.8156.8 (s, C-9), 156.1 (s, C-2), 133.5 (s, C-3), 131.0(d,C-2', 6),(C, C-5), 110.6 (C, C-6), 163.2 (C, C-7), 94.2 (CH, C-8), 159.7120.8 (s, C-1), 115.2 (d, C-3', 5), 105.7 (s, C-10), 100.7(d, C-(C, C-9), 101.9 (C, C-10), 128.0 (C, C-1), 115.3 (CH, C-2),1"), 99.7 (d, C-1"), 99.4 (d, C-6), 77.6, 77.2, 76.5 (2C), 74.2,Water- Soluble Constituents of Cudrania tricuspidata 99973.1, 69.9, 69.6, 60.9, 60.6.C-7), 161.7 (s, C-4), 157.6 (s, C-5), 157.3 (s, C-9), 154.7 (d,C-2), 130.3 (d, C-2', 6), 122.6 (s, C-1), 121.0 (s, C-3), 115.2Compound 6(d, C-3, 5), 106.1 (s, C-10), 99.8 (d,C-1"), 9.6 (d, C-6), 94.6ellow powder, CxHxO4; 1C.NMR (in DMSO-da)8: 181.2(s, (d, C-8), 77.27 (d, C-5"),76.4(d, C-3),73.1 (d,C-2'), 69.6 (d,C-4), 163.5 (s, C-7), 158.2 (s, C-4), 158.0 (s, C-5), 158.0 (s,C-4"), 60.6(t, C-6").C-9), 155.0 (d, C-2), 130.6(d, C-2', 6'), 123.3(s, C-1), 121.8(s, C-3), 115.6 (d, C-3', 5), 106.9 (s, C-10), 101.2 (d, C-1",Compound 12101.8 (d, C-6), 100.3 (d, C-1"), 95.2 (d, C-8), 77.2 (CH), 76.3White powder, CgHgO3; 'H-NMR (in DMSO-da)8.7.93(1H,d,J=(CH), 73.6 (CH), 72.9 (CH), 71.5 (CH), 70.9 (CH), 70.6 (CH),9.3 Hz, H-1), 7.52 (1H,d, J= 8.4 Hz, H-5), 6.79 (1H, dd,J=68.9 (CH), 67.2 (CH2), 18.1 (CH2).8.4, 2.1 Hz, H-6), 6.71 (1H, d,J=2.1 Hz, H-2), 6.19(1H,d,J=9.3Hz, H-2); 18C-NMR (inDMSO-d})8: 161.4 (C-4), 160.5(C-3),Compound 711.4(C-2), 15.5(C-1)1, 13.2 (C-6) 129.8(C-5), 102.2(C-1),Yellow powder, C21H2oO12; 13C-NMR (in DMSO-0}) 8: 176.0(s,144.6(C-2").C-4), 162.7 (s, C-7), 160.4 (s, C-5), 155.7 (s, C-9), 148.1 (s,C-2), 147.6(s, C-4), 145.2 (s, C-3), 136.2 (s, C-3), 121.7(s, Compound 14C-1), 120.0(d, C-6), 15.d. C-2), 15.4(4,C,5)5,55 104.7(s,White powder, CrH2Oo: 1C-MR(in DMSO-d) 8: 129(C1),C-10), 99.9 (d, 1"), 98.7 (d, C-6), 94.2 (d, C-6), 77.2(d, C-5"),97.9(C-2), 165.2 (C-3), 94.0(C-4), 157.4 (C-4a), 146.0(C-4b),76.4 (d,C-3").73.1 (d,C-2"), 69.6(d,C-4"), 60.6(t, C-6").132.5 (C-5), 152.0 (C-6), 113.1 (C-7), 115.9 (C-8), 113.0(C-8a), 101.4 (C-8b), 179.7(C= 0),Compound 8Yellow powder, CisHroOs; 18C-NMR (in DMSO-da) 8: 180.2 (s,Compound 15C-4), 164.5 (s, C-7), 162.1 (s, C-4), 157.7 (s, C-5), 157.4(s,Yellow powder, C22H8O%; 1H-NMR (in DMSO-d) 8: 12.22 (1H,C-9), 154.0 (d, C-2), 130.3 (d, C-2', 6), 122.3 (s, C-1), 121.30H-5), 7.26 (2H, d, J=8.4 Hz, H-3,5).6.96 (2H, d, J=8.4 Hz,(s, C-3), 115.1 (d, C-3, 5), 104.4 (s, C-10).99.1 (d, C-6), 93.7H-3", H-7"), 6.74 (2H, d,J= 8.4 Hz, H-2, 6), 6.56 (2H, d,J=(d, C-8).8.4 Hz, H-4", H-6"), 5.91 (1H, s, H-8), 4.97 (1H, d,J=11.4 Hz,H-2), 4.53 (1H,d,J= 11.4Hz, H-3), 3.62 (2H,s, H-1"); 19C-NMRCompound 9(in DMSO-d) 8: 83.5 (CH, C-2), 72.2 (CH, C-3), 198.7(C= O,White powder, C1sH;2O%; 1H-NMR(inDMSO-d胡) 8: 1.92 (1H,s,C-4), 161.1 (C, C-5), 109.0 (C, C-6), 165.7 (C, C-7), 95.2 (CH,OH), 10.86 (1H, s, OH), 9.58 (1H, s, OH), 7.31 (2H, d,J= 8.4C-8), 161.2 (C, C-9), 100.7 (C, C-10), 128.4 (C, C-1), 115.4Hz, H-2', 6's), 6.78 (2H, d,J= 8.4 Hz, H-3, 5), 5.90 (1H,d,J=(2CH,C-3,5), 129.7 (2CH, C-2, 6), 26.9 (CH2, C-1"), 131.9(C,1.8Hz, H-8) , 5.85 (1H,d, J= 1.8 Hz, H-6), 5.78 (1H,d,J=6.3C-2), 129.7 (2CH,C-3",7"), 1.(2CH,C4, 6"), 158.4(C,C-5").Hz, OH-3), 5.04 (1H, d, J= 11.4 Hz, H-2), 4.60 (1H, dd,J=11.4 Hz, H-3); 18C-NMR (in DMSO-djδ: 198.1 (s, C-4), 168.0(s,Compound 16C-7), 163.5 (s, C-5), 164.0 (s, C-9), 157.9(s, C-4), 129.7 (d,Yellow powder, C2zHeO>; [a)P8 +19.49 (c0.5 CH2OH). 'H-NMRC-2, 6), 127.8 (s, C-1), 115.1 (d, C-3', 5), 100.6 (s, C-10),(in DMSO-da) 8: 11.92 (1H, OH-5), 9.16 (2H, OH), 6.96 (2H, d,96.2 (d, C-6), 95.2 (d, C-8), 83.1 (d,C-2),71.6(d, C-3).J=8.4 Hz, H-3", H-7"), 6.92 (1H, s, H-2), 6.77 (2H,s.H-5, 6),6.60 (2H, d, J= 8.4Hz, H-4", H-6"), 6.03 (1H,s, H-8), 5.77 (1H,Compound 100H), 4.98 (1H, d, J= 11.1 Hz, H-2), 4.48 (1H,d, J= 11.1 Hz,Yellow powder, Ci1sHroO6; 1H-NMR(in DMSO-d)δ: 12.49 (1H,s,H-3), 3.57 (2H,s, H-1"); IBC-NMR (in DMSO-d) 8: 83.1 (CH,C-0H-5), 10.14 (2H, s, OH), 8.04 (2H,d, J= 8.1 Hz,H-2, 6),6.922), 71.8 (CH, C-3), 198.2 (C = 0, C-4), 161.3 (C, C-5), 107.9(2H,d,J= 8.1 Hz, H-3', 5), 6.42 (1H,d,J= 1.5Hz, H-8), 6.18(C, C-6), 164.9 (C, C-7), 95.7 (CH, C-8), 159.5(C, C-9), 100.4(1H,d,J= 1.5Hz, H6); 18C-NMR(inDMSO-d)δ: 175.9(s, C-4),(C, C-10), 128.5 (C, C-1), 115.2 (CH, C-2), 145.0(C-3), 145.8164.3 (s, C-7), 160.8 (s, C-9), 159.3 (s, C-4"), 156.3 (s, C-5), .(C-4), 15.(CH,C~5), 119.3(CH,C-6), 26.8(CH,C-1"7, 131.3135.7 (s, C-3), 129.6 (d, C-2, 6), 115.5 (d, C-3, 5), 103.0(s,(C, C-2"), 129.4 (2CH, C-3",7"), 114.9 (2CH, C-4", 6"), 155.3C-10), 98.4 (d, C-6), 93.6 (d, C-8).(C,C-5").Compound 11Con中国煤化工Yellow powder, Cr2H20O1o; 'H-NMR (in DMSO-6)8: 9.64(1H,s,YHCNMHCActone-da)8: 8.11 (1H,s,OH), 8.44 (1H, s, H-2), 7.39 (2H, d,J= 8.4Hz, H-2", 6), 6.82H-2),1.10(1n,u,U= 1.un2, nc 1, u.0(30(1H, dd, J=8.4, 1.5Hz,(2H, d, J= 8.4 Hz, H-3, 5), 6.71 (1H,d,J=2.1Hz,H-8) , 6.46H-6), 6.86 (1H, d,J= 8.4 Hz, H-5"), 6.38 (1H,d,J= 1.8 Hz,(1H, d, J= 2.1 Hz, H-6), 5.46 (1H, d, J=4.2 Hz, H-1"), 5.20-H-8), 6.26 (1H, d, J= 1.8 Hz, H-6); 13C-NMR (in Actone-da) δ:3.15 (7H, m);19C.NMR (in DMSO-d)δ: 180.6(s, C-4), 163.1 (s,154.3 (CH, C-2), 123.4 (C, C-3), 181.5(C= O, C-4), 163.41000 Joumal of Integrative Plant Biology Vol.48 No.8 2006(C, C-5), 99.7 (CH, C-6), 165.2 (C, C-7), 94.5 (CH,C-8), 159.01211-1219.(C, C-9), 105.7 (C, C-1), 124.1 (C, C-1), 117.0(CH, C-2),Jiangsu New Medical College (000). Dictionary of Traditional145.6(C, C-3), 146.4(C,C-4), 115.9(CH,C-5), 121.4(CH,C-6).Chinese Medicines. Shanghai Science and TechnologyPublisher, Shanghai (in Chinese).Lee lK, Kim CJ, Kim HM (1995). Two benzylated dinydroflavonolsReferencesfrom Cudrania tricuspidata. J Nat Prod 58, 1614-1617.Lee K, KIm CJ, Song KS (1996). Cototoxic benzyl dinyroflavonolsAgerawal PK (1989). Carbon-13 NMR of Flavoids. EIsevier Science,from Cudrania tricusphidata. Phytochemistry 41, 213- -216.New York.Leite ME, Gottlieb OR (1974). Iso- and neoflavonoids from DalbergiaBreytenbach JC (1986). Ioflavone glycosides from Neorautaneniainundata. Phytochemistry 13, 751-752.amboensis. J Nat Prod 49, 1003-1009.Markham KR, Ternai B, Stanley R (1978). Caron-13 NMR studies ofFrahn AW, Chaudhur RK (1979). 13C NMR spectroscopy of substi-flavonoids. II. Naturally occurring flavonoid glycosides and theirtuted xanthones. II. 1C NMR spectral study of polyhydroxyacylated denvatives. Tetrahedron 34, 1389.xanthones. Tetrahedron 35, 2035- -2038.Markham KR, Webby RF, Vilain C (1984). 7.0-Methyl-(2R,3A)-FuJlmoto T, Hano Y, Nomura T (1984a). Components of root bark ofdihydroquerctin 5-0-B-D-glucoside and other flavonoids fromCudrania tricuspidata. 1. Structures of four new isoprenylatedPodocarpus nivalis. Phytochemistry 23, 2049- -2052.xanthones, cudraxanthones A B, C and D. Planta Med50, 218221.Nakanishl T, Nishl M, Inada A, Obata H, Tanabe N, AbeS et al.Fujlmoto T, Hano Y, Nomura T (1984b). Components of root bark of(1990). Two new inhibitors of xanthine oxidase from leaves ofCudrania tricuspidata. 2. Structures of two new isoprenylatedPerilla frutescens Britton var. acuta Kudo. Chem Pharm Bull38,flavones, curaflavones A and B. Planta Med 50, 161-163.1772- -1774.Fulmoto T, Hano Y (1985). Components of root bark of CudraniaSlade D, Ferreira D, Marals JPJ (2005). Circular dichroism, a pow-tricuspidata. 3. isolation and structure studies on the flavonoids.erful tool for the assessment of absolute configuration ofPlanta Med 51, 190-193.flavonoids. Phytochemistry 66, 2177-2215.Gullado DM, Kosalba s, Alberto V (1994). Two isflavones and aToru O, Keiko H, Yukio H (1978). The constituents of Osmundaflavone from the fruits of Madura pomiftra. Phytochemistry 37,asiatica. Chem Pharm Bull 26, 3071-3074.893-898.Yu RM, LI X, Zhang HJ, Wu LJ, Zhu TR (1992). Studies on chemicalHano Y, Matsumoto Y, Sun JY, Nomura T (1990). Structures of fourcompounds of Oxytropis glabra DC. Acta Bot Sin 34, 369 -377new isoprenylated xanthones, Cudraxanthones H, I, J and K.(in Chinese with an English abstract).Planta Med 56, 478 481.Zou YS, Hou AJ (2004). Cytotoxic isoprenylated xanthones fromHem CJ, Fritz z, Eberhard B (1980). Carbon-13 chemical shiftCudrania tricuspidata. Bioorganic & Medicinal Chemistry 12,assignments of chromones and isoflavones. Can J Chem 58,1947-1953.(Managing editor: Wei Wang)中国煤化工MYHCNMHG

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。