数据挖掘中匿名化隐私保护研究进展 数据挖掘中匿名化隐私保护研究进展

数据挖掘中匿名化隐私保护研究进展

  • 期刊名字:科技导报
  • 文件大小:
  • 论文作者:谭瑛
  • 作者单位:云南财经大学信息学院
  • 更新时间:2022-04-23
  • 下载次数:
论文简介

随着信息技术的发展,如何在保证数据高可用性的同时,不泄露数据主体的隐私信息,已日益引起国内外研究者的高度关注.隐私保护技术主要有数据加密、数据失真以及数据匿名化技术,其中匿名化技术是数据挖掘中隐私保护的最主要技术手段.围绕匿名技术的研究,国内外学者提出了多种匿名隐私保护模型,通过对其中4种主要模型,即k-匿名模型、l-多样性模型、(α,k)-匿名模型和t-closeness模型的分析比较,指出每种匿名模型的特点及优、缺点,并归纳了常用的匿名技术,总结了当前主要的匿名化质量的度量方法.未来匿名化技术作为数据挖掘中隐私保护的主要手段,还将面临着需要进一步解决的问题,对数据挖掘中匿名隐私保护的下一步研究方向进行了展望.

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。