VRLA高温电池用耐热阻燃ABS热降解行为分析 VRLA高温电池用耐热阻燃ABS热降解行为分析

VRLA高温电池用耐热阻燃ABS热降解行为分析

  • 期刊名字:蓄电池
  • 文件大小:
  • 论文作者:党志敏,刘桃松
  • 作者单位:浙江南都电源动力股份公司
  • 更新时间:2020-03-24
  • 下载次数:
论文简介

蓄电池Chinese LABAT ManVRLA高温电池用耐热阻燃ABS热降解行为分析党志敏,刘桃松(浙江南都电源动力股份公司,浙江杭州311305)摘要:本文通过热重法(TG-DTG) 比较高温VRLA蓄电池槽用的耐热阻燃ABS与普通ABS电池槽材料在热降解过程中的差异,并采用Flynn-Wall-Ozawa法求得其反应活化能。结果显示,耐热阻燃ABS的初始热降解温度降低,但热降解速率降低且热降解温度范围扩大,炭化残重也有所增加。同时其活化能(E、)随失重率(a)变化较复杂,a在0.2时耐热阻燃ABS的E。相对较低,仅155.5 kJ/mol,比纯ABS的低约50 kJ/mol,在a大于0.3以后其E。均比纯ABS的大,最大约243.6 kJ/mol,比纯ABS的E。大52 kJ/mol左右。关键词: ABS; 阻燃;耐热;降解;活化能;高温VRLA蓄电池中图分类号: TM912.1文献标识码: B文章编号: 1006-0847(2015)01-06-04Analysis of thermal degradation behavior of heat resistant andfame retardant ABS resin for high temperature VRLA batteryDANG Zhi-min, LIU Tao-song(Narada Power Source Co., Ltd, Hangzhou Zhejiang 311305, China)Abstract: The differences between heat resistant and flame retardant ABS resin for high temperatureVRLA battery and pure ABS resin in the thermal degradation process were studied by thethermogravimetry (TG-DTG), and their activation energy was calculated with Flynn-Wal-Ozawaequation in this paper. The results showed that the initial thermal degradation temperature of theheat resistant and flame retardant ABS dropped, meanwhile the degradation rate decreased, thermaldegradation temperature range expanded and residual weight also increased. At the same time, theactivation energy (E) changes with weight loss (a) were more complex, when a is 0.2, E。of the heatresistant and flame retardant ABS was 155 kJ/mol, and 50 k.J/mol lower than that of pure ABS, when ais greater than 0.3, E。of heat resistant and fame retardant ABS was 243.6 kJ/mol, and greater than thatof pure ABS about 52 kJ/mol.Key words: ABS resin; flame retardant; heat resistant; degradation; activation energy; high temperatureVRLA battery0前言随着通信业的飞速发展及网络覆盖的全面性,三大通信运营商的移动通信基站总数已经超过100收稿日期: 2014-08-05万个,无人基站的数量也8益增加。目前基站大都采用VRLA电池且多建在野外高山、民房制高点等06 2015 No.1 Vo1.52蓄电池试验研究Chinese LABAT Manwww.batterychn.com高温高湿地区。据统计.全年基站内空调耗电超过。 2结果 与分析70亿度V REA高料晶电4池.,用摩通热展阻燃AABS热降解行为分析站,如果把基站空调设定温度由现在的25 °C提高图1是耐热阻燃ABS和普通ABS在不同升温到35 °C,温度提高10°C计算,整个机房的电耗,速率下的热重 (TG) 曲线。从图1可见,随着升将降低60 %~80 %,在能源日益紧张舶晶蛰下温速拳的提高,纯ARS和耐热阻燃ABS的热降解为了响应国家号召和市场发展,”实现书能减罪的效四晶线彤状均先变化,但都向高温方向偏移,使热降果,提高蓄电池的使用温度从而降低空调能耗显得解开始的温度和热降解结束温度都升高。纯ABS尤为必攘要但R涌电池酌寿命极大砸依赖其牲瘫温V鹃热曄解曲线臾有血邻隔幾A在S3万着00PC,而温度,当洫搜增赫晦热骆逸被糇的曾蚀箱失承,采电Fly耐热阻燃)xBS的热峰解芬两率娇段能一爷是茌280池鼓胀示容董恭降燃寿鄙也髓馨缩短降鲁通庵隐先,但热骆蟹迷率獎重率练稳略温鹿莳周能是配券华阻燃法长期鹬雯嵩瘟所嵩溫电阄技某盾选能里)喃嵩盂率(a瓣的然解,,别特怔温搜范围整38BS物F°C,电池技架昔婪就是研发箭魚阻燃ABS材料ABS的低约5尖重率为8存%大该温度范菌葛纯AB5的热降解特本受针对新栅复的耐然阻燃AB5纯梨用热重大征温度相寄右它是ABS对应的热降解温度。经过法比较糞彎撸通RBS黽沲槽材斡熱降解过程的差高湖06E篙瘟后池纯ABS炭化残重接近于2%,而耐异,并隶刚客裘屋动分學參数,从帝韩桥保酌热热陪熟 编号炭化幾量约8965)01-06-04稳定性。目前测定反应动力学参数的方法主要有热图2是以10 °C/min升温速率为例做的热失重重法(T&hal养扫掸艳清mRre积着蛰命tion速瓷曲线v i肝r-OTF倦线t否理看性n纯ARY在高析法(9TAm reta李齐糴絷R传戀备呼8r h渴下鹤先需遗青盟昂毖声得赏ASBert县经历动力学参数的差异。的温受范围窄,在10 C/mtn并温速率下432 °C时DANG Zhi-min对应最太先惠速率达16.7 %,但耐热阻燃ABS经1实验(Narada Power Source Co, Lld, Hd历的濕麼蒋園鹰814t5, °En对应的最大失重速率为10 %/min,也就是说一方面其热降解速率降低,另采用梨号c! GA4009e的蛰重分断仪hea车氮氛nt and痴面基鼂太蛰降解速离对座的峰混囱高溻赢向偏气氛下vR通氖流最为0dmt/rm inBs升温速案分别ther務1村料热稳扇性确实有所提高tu俱同时也丽见耐为10、t4Om3@gn和AReEy/mio-I样晶质鼂約h1Qrn0tivation垫飓燃ARS蛰隆解开始的漏度降低l1材料热降解温度范園50or6QOffis下帖较耐热阻物tAB6o与普通at th提前ia有隅论认为这再最阻燃剂德材料提前分解成ABS电池槽林料的热隆解行为差品da并利B FluIped, m巍aw从面隔热隔氧dat陽止材料递rea步热份解租燃烧WallOaaya热降解反庇动丸学方程求解不同先重事resid的擬聚相作展机理的体现A t也表朋所用的限燃体下的活化能ati该方法的优点晶不露要知道详细的反(a)系而是通过提高材料分解温度而主要通诚减緩氧化应过程besistant and flame retardant ABS was 155 kJ/mol, a速率达到阻燃的品的ilothat of pure ABS, when ais greater than 0.3, E。of heat resistant and flame retardant ABS was 243.6 kJ/mol, and greater than thatof pure ABS about 52 kJ/mobKey words; ABS resin; flame retardant; heat resistant; degradation; activation energy; high temperatureVRLAbattery器04-∞4◎前言02-随着通信业的飞速发展及网络覆盖的全面性,300 400500一00三大通信运营商的移动通信基站总数已经超过100收稿日期: 2014-08-05温度/C万个,无人基站的数量也日益增加。目前基站大都图1不同升温速率邢用C/缆电池且多建在野外高山、民房制高点等06 2015 No.1 Vo1.522015 No.I Vo1.52 07蓄电池| Chinese LABAT Man温度,K; β一加热速率。0.00lgβ=( .0.4567E). 1 1101_ AE。-2.315 (1)RF(a))-0.005由表1和表2两种材料TG曲线读取的不同升g 4010温速率下失重率和温度的相应值,用Flynn-Wall-Ozawa方程对两种材料分别在升温速率β为10、-001520、30 和40。C/min,失重率即转化率a为0.1~00200.8下做图3,经线性拟合发现,其线性相关系数均大于0.8 (见表1和表2),lgβ 对1/T呈良好的线性关系。按表1和表2所列拟合直线的斜率,通图2不同材料在 10 °C/min下的DTG曲线过式(1)中直线斜率等于(-945675),求得不同失重率下采用Flynn-Wall-Ozawa法计算材料的热降解动的活化能,并做活化能与失重率曲线如图4所示。力学参数,见式(1), 式中: E。-活化能,kJ/mol;由图4可见,耐热阻燃ABS的E。随失重率A-指前因子,s; F(a)-转化率函数; T一反应变化较复杂,失重率在0.2以下时耐热阻燃ABS表1耐热阻燃 ABS活化能及相关系数B/(°C●min'a2034斜率相关系数E/(kJ ●mol')0.1338.55350.35365.18-8.5410.9926155. 48470.2361.52 37 1 .39385 .26 390.52-8.20730.9687149.40990.3403.15 412.04421.13425.91-12.1670.9868221.49430.4422.29432.13440.74446-12.5260.9928228.0297433.77444.57453.65459.87-11.8620.998215.9419).6443.82454.1465.13470.87-11.520.9847209.716).7452.75 466.09474.7480.91-11.7030.9997213.0474.8465.35476.61 .485.22490.48-13.3810.9974243.5946表2 ABS活化能及相关系数β/(°C●min')1030.1405.33414.43422.52430.41-11.4370.9768208.205.2417.16427.84436.05444.3-11.0592013237.3423.98435.57445.63452.58-10.5590.9915192.2214.4430.81442.78452.39460.82-10.3880.9886189.1085.5436.26448.97459.72467.53-10.060.9918183.1374.6442.63455.67467.04475.77-9.68840.9889176.3726449.46463.4475.5484.02-9.45730.9914172.1655460.37472.68483.95492.27-10.5030.9872191.2021211021301351.40145150135516018s1321351.3814114 147(17)+1000K"07)=1000K"图3经Flynn-Wall-Ozawa法处理后的lgβ ~(1/7)X 1000图08 2015 No.I Vo1.52

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。