生物质热解研究现状与展望 生物质热解研究现状与展望

生物质热解研究现状与展望

  • 期刊名字:农业工程技术·新能源产业
  • 文件大小:
  • 论文作者:赵廷林,王鹏,邓大军,舒伟,曹冬辉
  • 作者单位:河南农业大学机电工程学院
  • 更新时间:2020-03-24
  • 下载次数:
论文简介

Research生物质热解研究现状与展望■赵廷林,王鹏,邓大军,舒伟,曹冬辉(河南农业大学机电工程学院,农业部可再生能源重点开放实验室,郑州450002)摘要:主要论述了生物质热解技术的原理、热解反应过程、热解工艺类型及影响因素。在分析国内外发展现状的基础上,提出生物质热解技术主要存在的不足,对生物质热解技术的发展前景进行了展望。关键词:生物质热解;研究进展;发展现状;展望0引言学转化技术方法。生物质热解的燃料能源转化率可通过生物质能转换技术可高效地利用生物质能达955%,最大限度的将生物质能量转化为能源产源,生产各种清洁能源和化工产品,从而减少人类品,物尽其用,而热解也是燃烧和气化必不可少的对于化石能源的依赖,减轻化石能源消费给环境造成初始阶段1的污染。目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保热解技术原理护本国的矿物能源资源,为实现国家经济的可持续发1.1热解原理展提供根本保障。从化学反应的角度对其进行分析,生物质在热解生物质热解是指生物质在没有氧化剂(空气、过程中发生了复杂的热化学反应,包括分子键断裂、氧气、水蒸气等)存在或只提供有限氧的条件下,异构化和小分子聚合等反应。木材、林业废弃物和农加热到逾500℃,通过热化学反应将生物质大分子物作物废弃物等的主要成分是纤维素、半纤维素和木质质(木质素、纤维素和半纤维素)分解成较小分子素。热重分析结果表明,纤维素在52℃时开始热解,的燃料物质(固态炭、可燃气、生物油)的热化随着温度的升高,热解反应速度加快,到350~370℃宜研Academic researc时,分解为低分子产物,其热解过程为:质依靠外部供给的热量进行木炭的燃烧,使木炭中的(CH12O3n→nCbH2O3挥发物质减少,固定碳含量增加,为放热阶段。实CHO3→HQ+2CH3-CO-CHo际上,上述四个阶段的界限难以明确划分,各阶段CH1-CO-CHO+H2→CH3-CO-CHOH的反应过程会相互交叉进CH3-CO-CHOH+H2→CH3-CHOH—CH+H2O半纤维素结构上带有支链,是木材中最不稳定的2热解工艺及影响因素组分,在225~325℃分解,比纤维素更易热分解,21热解工艺类型其热解机理与纤维素相似2。从对生物质的加热速率和完成反应所用时间的角从物质迁移、能量传递的角度对其进行分析,度来看,生物质热解工艺基本上可以分为两种类在生物质热解过程中,热量首先传递到颗粒表面,型:一种是慢速热解,一种是快速热解。在快速热再由表面传到颗粒内部。热解过程由外至内逐层进解中,当完成反应时间甚短(<0.5s)时,又称行,生物质颗粒被加热的成分迅速裂解成木炭和挥发为闪速热解。根据工艺操作条件,生物质热解工艺分。其中,挥发分由可冷凝气体和不可冷凝气体组又可分为慢速、快速和反应性热解三种。在慢速热成,可冷凝气体经过快速冷凝可以得到生物油。一解工艺中又可以分为炭化和常规热解。次裂解反应生成生物质炭、一次生物油和不可冷凝气慢速热解(又称干馏工艺、传统热解)工艺具体。在多孔隙生物质颗粒内部的挥发分将进一步裂有几千年的历史,是一种以生成木炭为目的的炭化过解,形成不可冷凝气体和热稳定的二次生物油。同程,低温干馏的加热温度为500-580℃,中温干馏时,当挥发分气体离开生物颗粒时,还将穿越周围温度为60~-750℃,高温干馏的温度为900~1100℃。的气相组分,在这里进一步裂化分解,称为二次裂将木材放在窑内,在隔绝空气的情况下加热,可以解反应。生物质热解过程最终形成生物油、不可冷得到占原料质量30%~3%的木炭产量。凝气体和生物质13.4。快速热解是将磨细的生物质原料放在快速热解装1.2热解反应基本过程置中,严格控制加热速率(一般大致为10~200℃/s)根据热解过程的温度变化和生成产物的情况等可以分为干燥阶段、预热解阶段、固体分解阶段和煅烧阶段。1.2.1千燥阶段(温度为120~150℃),生物质中的水分进行蒸发,物料的化学组成几乎不变。1.2.2预热解阶段(温度为150~275℃),物料的热反应比较明显,化学组成开始变化,生物质中的不稳定成分如半纤维素分解成二氧化碳、一氧化碳和少量醋酸等物质。上述两个阶段均为吸热反应阶段。1.2、3固体分解阶段(温度为275~475℃),热解的主要阶段,物料发生了各种复杂的物理、化学反应,产生大量的分解产物。生成的液体产物中含有醋酸、木焦油和甲醇(冷却时析出来);气体产物中有CO2、CO、CH4、H2等,可燃成分含量增加。这个阶段要放出大量的热。1.2.4煅烧阶段(温度为450~500℃),生物爪研demic research和反应温度(控制在500℃左右),生物质原料在缺速度的快慢有很大差异。一般地说,低温、长期滞氧的情况下,被快速加热到较高温度,从而引发大留的慢速热解主要用于最大限度地增加炭的产量,其分子的分解,产生了小分子气体和可凝性挥发分以及质量产率和能量产率分别达到30%和50%(质量分少量焦炭产物。可凝性挥发分被快速冷却成可流动的数)1-131。液体,成为生物油或焦油,其比例一般可达原料质温度小于600℃的常规热解时,采用中等反应速量的40%~60%。率,生物油、不可凝气体和炭的产率基本相等;闪与慢速热解相比,快速热解的传热反应过程发生速热解温度在500~650℃范围内,主要用来增加生物在极短的时间内,强烈的热效应直接产生热解产物,油的产量,生物油产率可达80%(质量分数);同再迅速淬冷,通常在05s内急冷至350℃以下,最大样的闪速热解,若温度高于700℃,在非常高的反应限度地增加了液态产物(油)。速率和极短的气相滞留期下,主要用于生产气体产常规热解是将生物质原料放在常规的热解装置中,物,其产率可达80%(质量分数)。当升温速率极在低于600℃的中等温度及中等反应速率(01-1℃/s)快时,半纤维素和纤维素几乎不生成炭1。条件下,经过几个小时的热解,得到占原料质量的22,2生物质材料的影响20%~25%的生物质炭及10%~20%的生物油9生物质种类、分子结构、粒径及形状等特性对表1生物质热解的主要工艺类型工艺类型反应温度/℃滞留期升温速率个最高温度/℃主要产物物料尺寸/mm慢速热解300-700>600s0.1-1数小时-数天非常低炭常规热解低气、油、炭快速热解10-20油闪速800-1000粉状闪速(液体〕Is高50油闪速(气体)Is高>650气极快速055非常高真空2-30s400反应性热解加氢热解<10高甲烷热解0.5~10s1050化学品22热解影响因素生物质热解行为和产物组成等有着重要的影响。这总的来讲,影响热解的主要因素包括化学和物理种影响相当复杂,与热解温度、压力、升温速率等两大方面。化学因素包括一系列复杂的一次反应和二外部特性共同作用,在不同水平和程度上影响着热解次反应;物理因素主要是反应过程中的传热、传质过程。由于木质素较纤维素和半纤维素难分解,因以及原料的物理特性等。具体的操作条件表现为:而通常含木质素多者焦炭产量较大;而半纤维素多温度、物料特性、催化剂、滞留时间、压力和升者,焦炭产量较小。在生物质构成中,以木质素热温速率l解所得到的液态产物热值为最大;气体产物中以木聚2.21温度糖热解所得到的气体热值最大51。在生物质热解过程中,温度是一个很重要的影响生物质粒径的大小是影响热解速率的决定性因因素,它对热解产物分布、组分、产率和热解气热素。粒径在1mm以下时,热解过程受反应动力学值都有很大的影响。生物质热解最终产物中气、速率控制,而当粒径大于1mm时,热解过程中还油、炭各占比例的多少,随反应温度的高低和加热同时受到传热和传质现象的控制。大颗粒物料比小兽底研Academic re颗粒传热能力差,颗粒内部升温要迟缓,即大颗粒期,使挥发产物迅速离开反应器,减少焦油二次裂物料在低温区的停留时间要长,从而对热解产物的解的时间3-分布造成了影响。随着颗粒的粒径的增大,热解产22.5压力物中固相炭的产量增大。从获得更多生物油角度压力的大小将影响气相滞留期,从而影响二次裂看,生物质颗粒的尺寸以小为宜,但这无疑会导致解,最终影响热解产物产量的分布。随着压力的提破碎和筛选有难度,实际上只要选用小于1mm的生高,生物质的活化能减小,且减小的趋势渐缓。在物质颗粒就可以了较高的压力下,生物质的热解速率有明显的提高,2.23催化剂的影响反应也更激烈,而且挥发产物的滞留期增加,二次有关研究人员用不同的催化剂掺入生物质热解裂解较大;而在低的压力下,挥发物可以迅速从颗试验中,不同的催化剂起到不同的效果。如:碱粒表面离开,从而限制了二次裂解的发生,增加了金属碳酸盐能提高气体、碳的产量,降低生物油的生物油产量4.15产量,而且能促进原料中氢释放,使空气产物中的22.6升温速率H/CO增大;K+能促进CO、CO2的生成,但几乎升温速率对热解的影响很大。一般对热解有正反不影响H2O的生成;NaC能促进纤维素反应中H2O、两方面的影响。升温速率增加,物料颗粒达到热解所CO、CO2的生成;加氢裂化能增加生物油的产量,需温度的相应时间变短,有利于热解;但同时颗粒内并使油的分子量变小。外的温差变大,由于传热滞后效应会影响内部热解的另外,原料反应得到的产物在反应器内停留时进行。随着升温速率的增大,温度滞后就越严重,间、反应产出气体的冷却速度、原料颗粒尺寸等,热重曲线和差热曲线的分辨力就会越低,物料失重和对产出的炭、可燃性气体、生物油(降温由气体析失重速率曲线均向高温区移动。热解速率和热解特征出)的产量比例也有一定影响温度(热解起始温度、热解速率最快的温度、热解224滞留时间终止温度)均随升温速率的提高呈线形增长。在一定滞留时间在生物质热解反应中有固相滞留时间和热解时间内,慢加热速率会延长热解物料在低温区的气相滞留时间之分。固相滞留时间越短,热解的固停留时间,促进纤维素和木质素的脱水和炭化反应态产物所占的比例就越小,总的产物量越大,热解导致炭产率增加。气体和生物油的产率在很大程度上越完全。在给定的温度和升温速率的条件下,固相取决于挥发物生成的一次反应和生物油的二次裂解反滞留时间越短,反应的转化产物中的固相产物就越应的竞争结果,较快的加热方式使得挥发分在高温环少,气相产物的量就越大。气相滞留期时间一般并境下的滞留时间增加,促进了二次裂解的进行,使得不影响生物质的一次裂解反应过程,而只影响到液态生物油产率下降、燃气产率提高16-13产物中的生物油发生的二次裂解反应的进程。当生物质热解产物中的一次产物进入围绕生物质颗粒的气相中,生物油就会发生进一步的裂化反应,在炽热的反应器中,气相滞留时间越长,生物油的二次裂解发生的就越严重,二次裂解反应增多,放出H2、CH,、CO等,导致液态产物迅速减少,气体产物增加。所以,为获得最大生物油产量,应缩短气相滞留底研咒ademic Research3热解技术研究现状循环流化床系统1:2031国内研究现状河南农业大学农业部可再生能源重点开放实验室与欧美一些国家相比,亚洲及我国对生物质热解也长期进行了生物质热解方面的研究。“YNO4型生的研究起步较晚。近十几年来,广州能源研究所生物质燃气脱焦机”的诞生解决了现有生物质热解气化物质能研究中心、浙江大学、东北林业大学等单位机组净化装置复杂、脱焦效率低且焦油难收集等问做了一些这方面的工作。题,结构简单,操作方便,避免了二次污染,系广州能源研究所生物质能研究中心,目前研究方统运行可靠,维护费用低,经济效益显著,适用于向重点为生物质热化学转化过程的机理及热化学利用各类生物质热解气化机组的配套及其商业化应用,已技术。其研究内容为:(1)高能环境下的热解机理于2001年11月通过省科技厅技术鉴定,并已在许昌研究:等离子体热解气化、超临界热解等;(2)气机电厂投入批量生产。化新工艺研究:高温气化、富氧气化、水蒸汽气化同时,该实验室与河南商丘三利新能源有限公司等;(3)气化技术系统集成及应用:新型气化装对生物质热解产物进行了综合利用的研究,并形成了置、气化发电系统等;(4)生物质气化燃烧与直接配套设备。根据农作物秸秆资源存在着季节性、分燃烧:气化燃烧技术、热解燃烧技术、直接燃烧等。散性的特点和运输、储存难的矛盾,采取了分散和浙江大学着眼于流化床技术在生物质清洁能源规集中的模式,即在农作物秸秆易收集的范围内建造小模化利用上显示出的巨大潜在优势,在上世纪末成功型生物质热解装置,就地使用生物质燃气,然后将开发了以流化床技术为基础的生物质热裂解液化反应便于运输的生物质炭、焦油、木醋液收集,建设若器,并在先期成功试验的基础上,针对已有的生物干集中加工厂,生产多种产品以供各种用途,较适质热裂解液化工艺中能源利用率不高以及液体产物不合我国的国情。分级等缺点,釆用独特的设计方案研发了生物质整合32国外研究现状式热裂解分级制取液体燃料装置,得出了各运行参数生物质热解技术最初的研究主要集中在欧洲和北对生物质热解产物的得率及组成的影响程度,适合规美。20世纪90年开始蓬勃发展,随着试验规模大小模化制取代用液体燃料。目前正在开展深层技术和扩的反应装置逐步完善,示范性和商业化运行的热解装展应用的研究。置也被不断地开发和建造。欧洲一些著名的实验室和东北林业大学生物质能研究中心研究方向:转锥研究所开发出了许多重要的热解技术,20世纪90年代式生物质闪速热解液化装置。经过一系列的调试、欧共体JOUE计划中生物质生产能源项目内很多课题的实验和改进后,现已经探索出了一些基本的设计规则启动就显示了欧盟对于生物质热解技术的重视程度。和经验。现阶段设备制造已完成,即将进入实验阶段,为今后设备改进及技术推广打好坚实的基础。另外在快速热裂解研究上,沈阳农业大学在联合国粮农组织(FTO)的协助下,从荷兰的BTG集团引入一套50kg/旋转锥闪速热解装置并进行了相关实验研究;上海理工大学、华东理工大学、浙江大学、中国科学院广州能源研究所、清华大学、哈尔滨工业大学和山东理工大学等单位也开展了相关实验研究,目前正在开展深层技术和扩展应用的研究在现在技术的支持下,用于商业运行的只有输运床和兽宜研咒AcadeResearch但较有影响力的成果多在北美涌现,如加拿大的 Castle Capital有限公司将BBC公司开发的10Kg/h-25Kg/h的橡胶热烧蚀反应器放大后,建造了1500Kg/h~2000kg/h规模的固体废物热烧蚀裂解反应器,之后,英国 Aston大学、美国可再生能源实验室、法国的 Nancy大学及荷兰的 Twente大学也相继开发了这种装置。荷兰 Twente大学反应器工程组及生物质技术(BTG)集团研制开发了旋转锥热裂解反应器,由优化系统整体效率被认为是最大化热解经济效益、具有于工艺先进、设备体积小、结构紧凑,得到了广泛相当大潜力的发展方向;除此之外,提高产物品质的研究和应用; Hamberg木材化学研究所对混合式反开发新的应用领域,也是当前研究的迫切要求。应器鼓泡床技术进行了改进和发展,成功地采用静电我国生物质热解技术方面的研究进展缓慢,主要扑捉和冷凝器联用的方式,非常有效地分离了气体中是因为研究以单项技术为主,缺乏系统性,与欧美的可凝性烟雾。 ENSYN基于循环流化床的原理在意等国相比还有较大差距。特别是在高效反应器研发大利开发和建造了闪速热解装置(RTP),还有一工艺参数优化、液化产物精制以及生物燃油对发动机些小型的实验装置也相继在各研究所安装调试。性能的影响等方面存在明显差距。同时,热解技术传统的热解技术不适合湿生物质的热转化。针对还存在如下一些问题:生物油成本通常比矿物油高这个问题,欧洲很多国家己开始研究新的热解技术,生物油同传统液体燃料不相容,需要专用的燃料处理这就是 Hydro Thermal Upgrading(HTU)将湿木设备;生物油是高含氧量碳氢化合物,在物理、化片或生物质溶于水中,在一个高压容器中,经过学性质上存在不稳定因素,长时间贮存会发生相分15min(200℃,300bar)软化,成为糊状,然后离、沉淀等现象,并具有腐蚀性;由于物理、化进入另一反应器(330℃,200bar)液化5-15min。学性质的不稳定,生物油不能直接用于现有的动力设经脱羧作用,移去氧,产生30%C0,、50%生物油,备,必须经过改性和精制后才可使用;不同生物油仅含10%-15%的氧。荷兰She公司证明:通过催品质相差很大,生物油的使用和销售缺少统一标准,化,可获得高质量的汽油和粗汽油。这项技术可产生影响其广泛应用。以上问题也是阻碍生物质高效、优质油(氧含量比裂解油低),且生物质不需干燥,规模化利用的瓶颈所在6。直接使用21.22针对以上存在的差距和问题,今后的研究应主要集中在如何提高液化产物收率,寻求高效精制技术,前景与展望提高生物油品质,降低运行成本,实现产物的综合利面对化石能源的枯竭和环境污染的加剧,寻找一用和工业化生产等方面。同时加强生物质液化反应机理种洁净的新能源成了迫在眉睫的问题。现在全世界都的研究,特别是原料种类及原料中各种成分对热化学反把目光凝聚在生物质能的开发和利用上。生物质能利应过程及产物的影响。在理论研究的基础上,将现有用前景十分广阔,但真正实际应用还取决于生物质的设备放大,降低生物油生产成本,逐渐向大规模生产各种转化利用技术能否有所突破。过渡,完善生物油成分和物理特性的测定方法,制定随着技术的不断完善,研究的方向和重点也在拓统一的规范和标准,开发生物油精制与品位提升新工宽,以前侧重热解反应器类型及反应参数,以寻求产艺,开发出用于热化学催化反应过程中的低污染高效催物最大化,而现在整体利用生物质资源的联合工艺以及化剂,使其能够参与化石燃料市场的竞争叫。翻R爪研我cademic Research作者简介赵廷林(1949-),男,河南南阳人,副教授,硕士生导师,主要从事新能源领域的研究。现任农业部农村可再生能源重点开放实验室副主任电话:0371-63558267Emailsummernowx@163.com参考文献]杨海平,陈汉平,王贤华等生物质热解研究的[冂.太阳能学报,200,021(433340.进展[J]煤气与热力,2006,26(5):1814]崔亚兵,陈晓平,顾利锋,常压及加压条件下2]李传统新能源与可再生能源技术[M江苏:东生物质热解特性的热重研究[J锅炉技术,2004,35(4)南大学出版社,2005:116-11712-14.[3]马承荣,肖波,杨家宽.生物质热解影响因素[15]E Cetin, R Gupta. B Moghtaderi. Effect of分析[]环境技术,2005,5:10-12pyrolysis pressure and heating rate on radiata pine char struc-[4]陈袆,罗永浩,陆方.生物质热解机理研究进展 ture and apparentε gasification reactivity冂.Fuel,2005,[J].工业加热,2006,35(5):4-7(84)328-1334袁振宏,吴创之,马隆龙等生物质能利用原理「16赖艳华,吕明新,马春元等.程序升温下秸秆与技术[M].北京:化学工业出版社,2005:289-293.类生物质燃料热解规律[燃烧科学与技术。2001,76]翟秀静,刘奎仁,韩庆新能源技术[M北京;(3)245-246化学工业出版社,205:266-271[17]宋春财,胡浩权.秸秆及其主要组分的催化热设生物质热分解技术比较研究门J.解及动力学研究[J].煤炭转2003,26(391-94可再生能源,2006,4:58~6218]李志合,易维明,柏雪源等.闪速热解挥发实8]陈军,陶占良能源化学M]北京:化学工业出版验中玉米秸颗粒滞留时间的确定门东理工大学学报(自然社,2004:206-207科学版),2004,18(110-139]苏亚欣,毛玉如,赵敬德.新能源与可再生能源1曹有为,王述洋,国内生物质热解技术的研究进概论[M]北京:化学工业出版社,2006:90-94展探究[J]林业劳动安全,2005,18(2):24-2610潘丽娜生物质快速热裂解工艺及其影响因素门[20]苗真勇,厉伟,顾永琴,生物质快速热解技术应用能源技术,2004,2:7研究进展[J].节能与环保,2005,(2)13-15[11] Bridgwater A V, Peacocke G V C Fast pyrolysis[21] Bridgewaster A V, PeacockeG V, Fast Pyrolysisprocesses for biomass[J]. Sustainable and R enewable Energ.Processes for Biomass Renewable& Sustainable Energy Reviews,Reviews.2000,4(1):1-732000(4):1~7312]刘汉桥,蔡九菊,包向军.废弃生物质热解[22] Bridgewaster A V, Cottam M LOpportunities for的两种反应模型对比研究[J材料与冶金学报,2003,2 Biomass Pyrolysis Liquids Production and Upgrading Energ(2153~156and Fuels,19926(2):113~120[13]李水清,李爱民,严建华等,生物质废弃物[23] Bridgwater A V. Towards The Bio-refinery-Fast Pyroly.在回转窑内热解研究L.热解条件对热解产物分布的影响 sis of Biomass[J. Renewable Energy World2001,(1):66~83.

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。