无轴螺旋连续热解装置上的生物质热解特性 无轴螺旋连续热解装置上的生物质热解特性

无轴螺旋连续热解装置上的生物质热解特性

  • 期刊名字:农业工程学报
  • 文件大小:
  • 论文作者:王明峰,吴宇健,蒋恩臣,陈晓堃
  • 作者单位:华南农业大学材料与能源学院
  • 更新时间:2020-03-24
  • 下载次数:
论文简介

第31卷第15期农业工程学报Vol.3l No.152162015年8月Transactions of the Chinese Society of Agricultural EngineeringAug. 2015无轴螺旋连续热解装置上的生物质热解特性王明峰,吴宇健,蒋恩臣*,陈晓堑(华南农业大学材料与能源学院,广州510642)摘要:连续热解是--种高效的生物质能转化技术,无轴螺旋式连续热解装置不仅可减轻送料部件的质量,而且为热解挥发性产物的排出提供了有效空间,是极具发展前景的连续热解装置。为了解无轴螺旋式生物质连续热解特性,该文在无轴螺旋连续热解装置上,开展了以稻壳、花生壳和木薯茎秆为生物质原料的热解试验,分析了3种生物质在不同热解温度下的三态产物分布特性、热解气体组分变化规律及热解炭的组织结构和表面形貌特征。结果表明:炭产率随热解温度升高逐渐下降,气体产率逐渐上升,液体产率先上升再下降,在450C时达到最大,产物分布特性与其他热解反应器的一-致:不同原料炭产率由高到低依次为:稻壳>花生壳>木薯茎秆,液体产率由高到低依次为:稻壳>花生壳>木薯茎秆,气体产率与液体产率相反。热解气体组分受温度影响较大,热解温度升高,可燃气体组分含量不断上升,不可燃气体组分含量不断下降,不同原料对气体组分含量影响较小。热解炭的工业分析结果与原料的工业分析结果存在相关性,热解温度升高,热解炭中挥发分含量逐渐下降,固定碳及灰分含量增加,木薯茎秆炭的挥发分含量最高,花生壳炭的固定碳含量最高,稻壳炭的灰分含量最高;低温热解炭的表面官能团较为丰富,随热解温度升高官能团种类逐渐减少:原料自身结构特性对热解炭的表面形貌影响较大,随着热解温度升高,生物质原料的表面结构不断被破坏,热解炭表面出现孔隙结构,花生壳炭与木薯茎秆炭表面孔隙结构比稻壳炭更为发达。关键词:生物质;热解;秸秆;无轴螺旋连续热解装置;产物分布;热解气组分;热解炭特性doi: 10.11975/j.issn.1002- 6819.2015.15.030中图分类号: TK 62文献标志码: A文章编号: 1002- 6819(2015)-15 -0216- 07王明峰,吴宇健,蒋恩臣,陈晓堑.无轴螺旋连续热解装置上的生物质热解特性[J].农业工程学报, 2015, 31(15):216- 222. doi: 10.1175/.issn.1002- 6819.2015.15.030htp://www.tcsae.orgWang Mingfeng, Wu Yujian, Jiang Enchen, Chen Xiaokun. Biomass continuous pyrolysis characteristics on shaftless screwconveying reactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15):216 - 222. (in Chinese with English abstract)doi: 10.11975/jissn. 1002-68 19.2015.15.030http://www.tcsae. .org文献[8]、[9]、 [10]在螺旋送料式连续热解装置上0引言对玉米秸秆、小麦秸秆和稻壳进行了热解特性研究,中国当前面临着能源枯竭与环境污染的双重危机,开表明,已有连续热解设备能够将生物质原料转化生成发新的洁净可再生能源受到广泛的关注,其中生物质能作炭、生物油和热解气,在一定范围内随着热解温度的为- -种含能体能源,是清洁丰富的可再生能源",而中国升高,炭产率下降,气体产率上升,液体产率先升高农业生产剩余物尚缺乏有效的回收利用途径,开展农业生后降低。连续热解的生物炭产率在34% ~42%之间;物质的开发利用研究具有深刻的意义和广阔的前景。生物油产率在35%左右,包括焦油和木醋液两部分,热解:是生物质能的一-种 重要利用形式,是指生物质主要组分为酸、醇、酮、酚等有机物;热解气产率在.原料在隔绝或者低氧的环境下受热裂解的过程,主要生17%~23%之间,成分主要包括: H2、 CO2、CO、CH4成固体炭、可冷凝液体油和可燃气体产物123。生物质连及其他ChHm等。续热解是-一种高效的热解处理方式,受到国内外研究学与现有的螺旋式连续热解装置相比,无轴螺旋式连者的重视,英国利兹大学及国内的华南农业大学、山东续热解装置不仅可减轻送料部件的质量,而且为热解挥省能源研究所、中科院兰州化学物理研究所和浙江大学发性产物的排出提供了有效空间,是极具发展前景的连等科研单位开展了以螺旋输送器为核心部件的生物质连续热解装置。目前,针对无轴螺旋式生物质连续热解特续热解装置的研究工作[47。性的研究较少。本文在自行研制的以无轴螺旋送料器为核心部件的连续热解反应器上,开展了具有代表性的3种生物质稻壳、花生壳和木薯茎秆的热解试验,分析生收稿日期: 2015-05-04 修订 日期: 2015-07-14基金项目:科技部农业科技成果转化资金项目(2014G2000048); 土壤植物质原料的组分差异和热解温度对三态产物分布、热解物机器系统技术国家重点实验室开放课题(2014-SKL-07)气体组分变化规律及热解炭的组织结构和表面形貌的影作者简介:王明峰,男,辽宁鞍山人,讲师,主要从事生物质能利用研究。响,并与已有热解炭化技术进行对比,探讨装置的适应州华南农业大学材料与能源学院,510642。 Email: wangnmingfeng@scau.edu.n性,为不同生物质原料连续热解工艺参数的确定和热解※通信作者:蒋思臣,男,黑龙江,教授,博士生导师,主要从事生物质能产物利用提供理论基础。利用工程研究。广州华南农业大学材料 与能源学院,510642。Email: ecjiang @ scau.edu.cn第15期王明峰等:无轴螺旋连续热解装置上的生物质热解特性2171原料与装置木科作物茎秆,纤维素、木质素含量较为丰富。试验用稻壳、花生壳和木薯茎秆分别购自于广州某稻谷加工厂、江1.1 原料本试验以3种代表性农业生物质稻壳、花生壳和木薯苏-植物肥料中心和广西的木薯生产基地,原料经粉碎后茎秆为原料,其组分分析1-31见表1,其中,稻壳是禾本科在70'C电热恒温干燥箱内烘干24h,统- -过 40目筛后装袋植物外壳,主要含有纤维素、半纤维素成分;花生壳是豆密封,其工业分析结果见表1,工业分析方法参考国标科草本植物外壳,主要成分为木质素;木薯茎秆是大戟灌GB/T287312012固体生物质燃料工业分析方法。表1原料组分分析与工业分析Table 1 Proportion of three-component and proximate analysis of biomass materials9组分分析Three component analysis工业分析Proximate analysis原料纤维素木质素水分挥发分灰分固定碳MaterialsCelluloseHemicelluloseLigninMoistureVolatileAshFixed carbon稻壳21.9019.0017.806.4568.5011.3813.6Rice husk化生元..16.9110.1027.436.0372.733.8717.3Cassavastalk34.3723.8136.258.076.394.511.081.2试验装置VERTEX70型红外光谱仪分析表面官能团、利用荷兰FEI试验用无轴螺旋连续热解装置见图1。热解装置由送公司XL-30-ESEM型扫描电镜观察表面形貌,热解气体料系统、热解反应系统和冷凝收集系统组成,包括调速组分含量利用安捷伦GC6820气相色谱仪进行检测。电机、进料漏斗、无轴螺旋输送器、热解炉体,温控器、2结果与讨论炭箱、冷凝管等主要部件。2.1无轴螺旋连续热解装置的冷态输送特性在常温下开展无轴螺旋连续热解装置的冷态输送特性试验研究,控制驱动电机转速,保证物料在热解管内停留时间为8 min,试验进行30 min后停止,统计管路内口wwwwwwww10叮残留生物质原料质量,结果见表2。14表2冷态试验管内物料残留量1.调速器2.驱动电动机 3.联轴器4.进料斗.热解反应器6.无车6.无轴螺旋输Table 2 Residues of materials at normal temperature experiment送器7.,加热炉 8.炭箱 9.出气口10.冷凝管 1.伴热带 12.气体回烧原料Materials残留量Residues/g13.伴热带温控器14.炉体支架 15.炉体温控器 16.电机支架 17.集气阀稻壳Rice husk9.8花生壳Peanut shell9. Gas outlet 10.Condenser tube 1 I .Heating belt 12 .Gas buming pipe木薯茎秆Cassava stalk24.813.Heating belt controller 14.Frame of heating furmace 15.Heating furnacecontroller 16.Frame of motor 17.Gas collection valve注:热解管内原料停留时间为8 min,下同。图1生物质无轴螺旋连续 热解装置Note: Conveying residence time is 8min. The same as below.Fig.1 Sketch of biomass continuous pyrolysis reactor热解管内物料输送存在死角,物料在进料口附近区装置工作原理如下:粉末状生物质原料经由进料漏域形成残留,不同原料的物料残留量不同。冷态试验中斗送入热解反应管,由电机带动无轴螺旋输送器将物料木薯茎秆残留量最大,花生壳次之,稻壳残留量最小。推送至热解反应器的高温反应区,物料在推送过程中完稻壳是禾本科纤维植物外壳,粉碎后更多呈现细密条状,成热解,生成的热解炭落入保温炭箱,热解挥发物通过螺旋推送时物料间作用力更大,有利于完全送料。而花炭箱出气口进入冷凝系统,液体产物被冷凝收集,不可生壳、木薯茎秆中木质素成分较高,粉碎后更多呈现较冷凝气体引至炭箱底部点燃,保证炭箱温度大于200"C,小的细片状或颗粒状,物料间作用力作用小,易滞留在管底,导致残留量增大。防止热解挥发物在炭箱内冷凝。1.3 试验方法2.2连续热解三态产率分析连续热解试验反应温度梯度为350、450、550、650"C,稻壳、花生壳和木薯茎秆连续热解三态产率及管内热解反应时间8 min,炭箱升温至200"C保温,采用4组残留量见表3,其中炭产率、液体产率和管内残留率通过冷凝管对热解挥发物进行冷却,冷却水温度为25C,试称量法获得,气体产率通过差减法求得。热解条件下,验中采用集气袋收集部分不可冷凝气体用于检测。试验管内物料残留量大小顺序与冷态试验相同,但热解生成结束后,统计热解炭、液产物及管路残留物料的质量。的焦油气回渗与原料混合,使原料更易粘附在无轴螺旋原料及热解炭表征方法:利用长沙友欣YX-GYFX 7701上,导致热解条件下的残留量略高。三态产物分布结果型全自动工业分析仪进行工业分析、利用布鲁克表明,热解温度升高后,原料中挥发分的析出量增大,218农业工程学报tp://www.tcsae.org)2015年固体产物质量减小,导致炭产率不断下降141。不同原料不同原料对气液两相产率影响较大。液体产率由高连续热解炭产率存在一定差别,稻壳与花生壳炭产率较到低依次为:稻壳>花生壳>木薯茎秆,气体产率与液为接近,木薯茎秆最低。稻壳中灰分与固定碳含量之和体产率相反。这2部分产物主要由原料水分及挥发分生最大,达25.04%,热解后主要存留于固体产物中,对炭成,其中挥发分起主导作用,由原料工业分析数据可见,产率贡献较大,炭产率最高;花生壳两者含量之和为3种原料中,木薯茎秆热解生成的挥发性产物较多,且更21.24%,炭产率次之;而木薯茎秆两者含量之和仅为容易发生二次裂解,利于生成气体产物;稻壳热解生成15.59%,且挥发分含量最高,对挥发性物质产率贡献较的挥发性产物较少且不利于二次裂解反应,因而更多地大,导致其炭产率最低。生成液体产物;花生壳则介于两者之间。生物质热解产物分布特性很大程度上是由热解条件表3原料连续热解三态产率及管内物料残留量(主要是热解温度)和原料的性质造成的16-181。尽管生物Table 3 Charcoal, liquid and gas yield of continuous pyrolysismaterials and residues in tube质原料特性和反应温度有一-定的区别,但是热解产物得原料Temperature/温度炭产率液体产率气体产率残留量率的变化规律基本-致。文献[19]和[20]在固 定床热解反Yieldof Yieldof YieldofMaterials C“ “”charcoal/Residues/g应器上的研究表明,随温度的升高,可燃气和液相冷凝liquid/% fuelgas/%物的产率增大,而热解炭产率减小。生物质在无轴螺旋35041.1227.3329.1311.0连续热解装置上的热解产物分布特性与其他热解反应器留壳33.6635.2428.5911.4Rice husk5531.3731.9434.2511.1的一致。6528.2640.1.62.3连续热解气体产物特性35.5930.8429.020.5花生壳生物质连续热解气体组分含量见图2。生物质原料中C45033.433.04>.23Peanut ;.6318.1元素比例最大,热解生成的气体主要由CO2和CO组成2,shell55027.8228.5726.7723.7445.0520.2此外还含有可燃气体H2、CH、CH4等。热解气体组分3528.3926.437.544.7受温度影响较大,随着热解温度升高,CO2含量下降,木薯茎秆4524.6319430.6550"C连续热解CO2相对含量约为35%,650"C连续热解Cassava22.1444.sta19.722.0351.928.6时则都低于30%; H2含量明显上升且增幅显著,与CO2存在竞争关系,650"C 热解时H2相对含量达20%~ 25%,气液两相产率呈竞争趋势。热解温度升高,液体产率文献[22]进行的玉米秸秆与稻壳热解试验同样表明:当温先升后降,在450°C时达到最大,此时,稻壳、花生壳和度从400C增加到600'C,H2相对含量显著升高,从4%木薯茎秆的液体产率分别为35.24%、33.04%和31.94%;升到28%,与本文研究结果相近: CO含量略微下降,总气体产率则相反,先略微下降再上升,在450"C时最小。体上保持稳定数值; CH4 含量先升高后稳定,350"C低温450^C的热解温度为气液产物竞争的分水岭。研究表明,热解产生甲烷较少,450"C后 保持相近数值,占15%~热解温度高于450°C时,会加剧液体产物二次裂解,生成20%; CH4含量逐渐升高,但含量较低。因此,随着热气体产物,导致液体产率下降。因此,欲获得液体产物,解温度升高,热解气体产物中可燃气体组分含量不断升热解反应温度应控制在450"C附近;欲获得气体产物,应高,不可燃气体组分含量不断下降,高温连续热解不仅进一步提高热解温度,增加液体产物的二次裂解!5。有利于气体产物生成,而且能够提高气体品质23-251。热解温度Pyrolysis temperature/rC23508 450日 550o 65070r60of三400出30口830f; 30一美自20-山小H,COCH,CO,CH售HcoCH。Co,CH,H co CH. CO2 CH,a. Rice huskb. Peanut shellC. Cassava stalk图2生物质连续热解气体组分含量Fig.2 Gas composition of biomass continuous pyrolysis不同热解温度下,3种原料的热解气组分变化趋势基约占25%,可燃气体相对含量达到75%。本一致,热解原料对气体组分含量影响不大,在试验热2. 4连续热解 炭特性分析解温度范围内,同一热解温度 下不同原料各热解气组分2.4.1连续 热解炭的工业分析含量差别小于5%,相差不大,在650"C下3种原料的热连续热解炭工业分析见表4。热解炭中固定碳含量最解气中H2约占25%、CO约占30%、CH4约占20%、CO2高,是热解炭的主要结构成分。随着热解温度升高,热第15期王明峰等:无轴螺旋连续热解装置上的生物质热解特性219解程度加深,生物质中挥发分不断分解析出,获得的热同原料热解炭的官能团丰富度存在一定差异, 花生壳炭解炭的产率不断减小:而灰分及固定碳大部分存留于热的表面官能团较丰富,稻壳炭表面官能团较少。解炭中,其占总体比例逐渐增大,导致热解炭中挥发分100百分含量逐渐下降,灰分及固定碳百分含量上升。550c-n 650C表4生物质热解炭工业分析冒8450-/青7(Table 4 Proximate analysis of bio-charcoal from continuous查60-pyrolysisMaterials原料Temperature/Volatil/% Ash/% Fixed carbon/%挥发分固定碳器40个竹行5028.6726.7641.2800000000200050010000 5o00稻壳炭45016.6331.5748.09波长Wave length/em"Rice huskcharcoalso012.7349.22a.稻壳炭a. Rice husk biochar6509.2436.6450.2835034.755.1花生壳炭23.94765.7780-550C-Peanut shell55017.6911.32oof13.6274.24450UNV器路39.5813.2340.46exx三2号木薯茎秆炭4525.1117.12Cassava stalks518.0518.584000 3500 3000 2300 2000 1500 1000 500波长Wave length/cm'6517.0720.8855.33b.花生壳炭b. Peanut shell biochar不同生物质热解炭的工业分析存在差异,并与原料的工业分析结果相关。3种热鮃炎的固定碳含量由高到低资9-650C依次为:花生壳炭>木薯茎秆炭>稻壳炭,挥发分含量由801s50C-高到低依次为:木薯茎秆炭>花生炭壳>稻壳炭,灰分含450C-量由高到低依次为:稻壳炭>木薯茎秆炭>花生壳炭。稻60壳炭中固定碳含量低于木薯茎秆炭,主要是由于稻壳炭.|的灰分含量较高,占总体比例过大,导致其固定碳含量4000350030002500200015001000 - 5002.4.2连续 热解炭表面官能团特性波长Wave length/em'450、 550、650C热解温度下获得的3种原料热解炭:木薯茎秆炭c. Cassava stalk biochar的红外光谱(FT-IR) 检测结果见图3。图3生物质热解炭红外图谱450C热解炭中,3 392 cm'处的吸收峰主要是分子.Fig.3 FT-IR spectra of bio-charcoal之间氢键缔合的醇、酚的一_OH伸缩振动,表明存在酚2.4.3连续 热解炭表面形貌特性羟基或醇羟基结构: 2958、 2921 cem'处的吸收峰主要是烷烃中的C- H的伸缩振动; s50、650C热解炭在此3种原料及其350、 450、 550、 650'C热解炭的扫描3个波数下的吸收峰消失。表明,随着热解温度升高,电镜(SEM)表征结果如图4,放大倍数为1600倍。热解炭中的一OH基团和_ CH2基团随挥发物的析出而由SEM图像可见,生物质原料表面结构较为平消失,生成CH4、CH、C2H6 等气态烃!201。1415~整,经热解后,表面结构被破坏,部分区域塌陷形成1694cm'为- C=C和C=O振动峰,表明生物质炭表面了凹凸不平的表面形态,随着热解温度继续升高,产含有羧基、羰基等酸性含氧官能团,此处峰面积减小,生了明显的孔隙结构。生物质原料高温热解后,其中该类官能团不断减少。1 095 cm'处吸收峰是酚、醚、的有机质被逐渐分解,残余的细胞结构形成了炭的孔醇的一C=O伸缩振动及一C=C 伸缩和一OH 面外弯曲腺结构,温度越高,表面结构变化越明显,大孔开始振动吸收峰,874、 794cm' 为芳香族化合物C-H变膨胀,并发育出更多的微孔结构126。不同原料热解炭形振动吸收峰,此处峰面积逐渐增大,表明随热解温度的表面形貌差异较大,花生壳炭与木薯茎秆炭表面孔升高,热解炭缩合度上升,结构高度芳香化,逐渐形成隙结构比稻壳炭更为发达,主要是由原料自身结构特芳香化炭结构127-281。性造成的:花生壳本身具有起伏的表面结构,木薯茎低温热解生物质炭中各类官能团较为丰富,随热解秆内部为蓬松的絮状结构,这些原料特性更有利于热温度升高,高波段的红外吸收峰消失,官能团种类逐渐解炭孔腺生成,而稻壳的表面结构并不发达,不利于减少,芳香化炭结构逐渐增多。在相同热解温度下, 不热解生成孔隙结构。220农业工程学报http://www.tcsae.org)2015年20 Jor20/ma.650C Rice husk Charcoal b. 650C Peanutshelichaharcoal 。650CCassavastalikcharcoald.350CRicehuskcharcoale 3soCPeanushellCharcoalRice husk charcob.650C Peanut shellcharcoal C. 650C Cassava stalk charcoalL520 Kice husk charcoale. 350C Peanut shell ch201m20 220 pm_f. 350C木薯茎秆炭g稻壳原料h.花生壳原料i木薯茎秆原料f. 350C Cassava stalk charcoalg. Rice huskh. Peanut shelli. Cassava stalk图4生物质原料及不同温度热解炭SEM图( 1600X )Fig.4 SEM images of bio-materials and charcoal in different pyrolytic termperature (1600X)trends of biomass pyrolysis technology[D]. Industrial Boiler,3结论2011(2): 10- 14. (in Chinese with English abstract)1)随着连续热解温度升高,炭产率逐渐下降,液体3] Demirbas A. Biomass resource facilities and biomass产率先升后降,在450"C时达到最大,稻壳、花生壳和木conversion processing for fuels and chemicals[J]. Energy薯茎秆的液体产率分别为35.24%、33.04%和31.94%,气Conversion & Management, 2001, 42(11): 1357- 1378.体产率与液体产率呈竞争关系。生物质在无轴螺旋连续4] Chidi E Efika, Chunfei Wu, Paul T Williams. Syngas热解装置上的热解产物分布特性与其他热解反应器的一production from pyrolysis-catalytic steam reforming of waste致。热解气体主要由CO2和可燃气体CO、H2、CH4、CH4biomass in a continuous screw kiln reactor[J]. Journal of组成,随着热解温度升高,可燃气体组分含量上升,不Analytical and Applied Pyrolysis, 2012, 95(5): 87-94.可燃气体组分含量下降,650°C 连续热解可燃气体相对含5] 蒋恩臣,苏旭林,王明峰,等,生物质连续热解反应装置量达75%。热解气体组份含量受温度影响较大,受原料的变螺距螺旋输送器设计[D].农业机械学报, 2013, 44(2): .影响不大。121- 124.2)热解炭工业分析结果表明,随着热解温度升高,Jiang Enchen, Su Xulin, Wang Mingfeng, et al. Design of挥发分含量逐渐下降,灰分及固定碳含量上升。不同原variable pitch spiral conveyor for biomass continuous料的热解炭工业分析存在差异,且与原料的工业分析结pyrolysis reactor[J]. Transactions of the Chinese Society for果存在相关性。Agricultural Machinery, 2013, 44(2): 121 : - 124. (in Chinese3)热解炭红外光谱分析结果表明:随着热解温度升with English abstract)高,热解炭逐渐形成芳香结构,缩合度上升,官能团种6] 王天岗,孙立,张晓东,等生物质热解释氢的实验研究[D].类逐渐减少。同-一热解温度,不同原料热解炭的官能团山东理工大学学报:自然科学版,2006, 20(5): 41-43. .丰富度存在差异,花生壳炭的表面官能团较丰富,稻壳Wang Tiangang, Sun Li, Zhang Xiaodong, et al. The study of炭表面官能团较少。the behavior of hydrogen released from biomass pyrolysis[J].4)扫描电镜结果表明,原料经热解后,表面结构被Journal of Shandong University of Technology: Sci & Tech,破坏,部分区域塌陷形成了凹凸不平的表面形态,随着2006, 20(5): 41 -43. (in Chinese with English abstract)热解温度的继续升高,产生了明显的孔隙结构。原料自I7] 马隆龙,颜涌捷,孔晓英,等.稻壳和木粉在内循环流化身结构特性对热解炭的表面形貌影响较大,花生壳炭与床气化炉中气化实验研究[].农业工程学报,2006, 22(增木薯茎秆炭表面孔隙结构比稻壳炭更为发达。刊1): 151-154.Ma Longlong, Yan Yongjie, Kong Xiaoying, et al. Study on[参考文献]gasification experiment of wood powder and rice husk in[] Caputo A C, Palumbo M, Pelagagge P M, et al. Economics ofinternally circulating fluidized bed gasifier[J]. Transactionsbiomass energy utilization in combustion and gasificationof the Chinese Society of Agriculture Engineeringplants: Effects of logistic variables[J]. Biomass an(Transactions of the CSAE), 2006, 22(Supp 1): 151-154. (inBioenergy, 2005, 28(): 35-51.Chinese with English abstract)[2]:蔡晓峰, 张涛生物质热解技术的现状、发展趋势及研究[J].8] 施建军,鲍巍涛.生物质连续裂解能源转化工艺与装置实工业锅炉,2011(2); 10-14.验研究[D].安徽化工,2008, 34(5): 25-28.Cai Xiaofeng, Zhang Tao. Current status and developmentShi Jianjun, Bao Weitao. Experimental research on biomass第15期王明峰等:无轴螺旋连续热解装置上的生物质热解特性pyrolysis set for energization[J]. Anhui Chemical Industry,[17] Sohi S, Loez-Capel E, Krull E, et al. Biochar's roles in soil2008, 34(5): 25- 28. (in Chinese with English abstract)and climate change: A review of research needs[R]. CSIRO9] 王明峰,蒋恩臣,李柏松,等.稻壳连续热解特性研究[D].Land and Water Science Report, 2009.太阳能学报,2012, 33(1): 168-172.[18] OLaughlin J, McElligott K. Biochar for Environ-mentalmanagement: science and technology[J]. Forest Policy andWang Mingfeng, Jiang Enchen, Li Bosong, et al. Study onEconomics, 2009, 11(7): 535 - 536.continuous pyrolysis of rice husk[J]. Acta Energiae SolarisSinica, 2012, 33(1): 168- 172. (in Chinese with English[19]曹青,鲍卫仁,吕永康,等.玉米芯热解及过程分析[J].燃abstract)料化学学报,2004, 32(5); 557 -562.[10] 袁艳文,田宜水,赵立欣,等.卧式连续生物炭炭化设备Cao Qing, Bao Weiren, Li Yongkang,研制[J].农业工程学报,2014, 30(13): 203- -210.reaction mechanism analysis of corncob[J]. Journal of FuelChemistry and Technology, 2004, 32(5): 557- 562. (inYuan Yanwen, Tian Yishui, Zhao Lixin, et al. Design andChinese with English abstract)manufacture of horizontal continuous biomass carbonizationequipment[]. Transactions of the Chinese Society of[20]夏祖章,张百良,余泳昌,等农业生物质裂解试验研究[J].Agriculture Engineering (Transactions of the CSAE), 2014,农业工程学报,1995, 11(3): 31-37.30(13): 203 - 210. (in Chinese with English abstract)Xia Zuzhang, Zhang Bailiang, Yu Yongchang, et al.[11] 熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木Experiment study on the pyrolysis of agricultural Biomass[J].质素的测定[D].粮食与饲料工业,2005(8): 40-41.Transactions of the Chinese Society of AgriculureEngineering (Transactions of the CSAE), 1995, 11(3): 31-Xiong Sumin, Zuo Xiufeng, Zhu Yongyi. Determination ofcellulose, hemi cellulose and ligin in rice hull[J]. Cereal & Feed37. (in Chinese with English abstract)[21] Muller Hagedorn M, Bockhorn H. Pyrolytic behaviour ofIndustry, 2005(8): 40-41. (in Chinese with English abstrac)different biomasses (angiosperms) (maize plants, straws and[12] 范鹏程,田静,黄静美,等.花生壳中纤维素和木质素含wood) in low temperature pyrolysis[], Joumal of Analytical量的测定方法[D].重庆科技学院学报:自然科学版,2008,and Applied Pyrolysis, 2007, 79(1): 136- 146.10(5): 64-65, 67.22] 闫桂焕,孙立,孙奉仲,等,玉米秸和稻壳热解产物的分Fan Pengcheng, Tian Jing, Huang Jingmei, et al. On the布规律[J].燃烧科学与技术,2010, 16(4); 358- 362.determination of cellulose and lignin of peanut shells[J].Yan Guihuan, Sun Li, Sun Fengzhong, et al, DistributionJournal of Chongqing University of Science and Technology:properties of pyrolrsis products of corn stalks and riceNatural Science, 2008, 10(5): 64- 65, 67. (in Chinese withhusks[J]. Journal of Combustion Science and Technology,English abstract)2010, 16(4): 358- 362. (in Chinese with English abstract)[13] Han L P, Steinberger Y, Zhao Y L, et al. Accumulation andpatitioning of nitrogen, phosphorus and potassium in23] 马林转,何屏,王华,等生物质热裂解实验研究[D]. 云different varieties of sweet sorghum[J]. Field Crops Research,南化工,2004,31(2): 9-11.2011, 120(2): 230-240.Ma Linzhuan, He Ping, Wang Hua, et al. Experiment study[14] 杨海平.油棕废弃物热解的实验及机理研究[D].武汉:华on pyrolysis of biomass[J]. Y unnan Chemical Technology,2004, 31(2): 9- 11. (in Chinese with English abstract)中科技大学,2005.Yang Haiping. The Experiment and Mechanism Study on[24]吕鹏梅,熊祖鸿,王铁军,等生物质流化床气化制取富Palm Oil Wastes Pyrolysis[D]. Wuhan: Wuhan Huazhong氢燃气的研究[J].太阳能学报,2003, 24(6);: 758- -764.University of Science and Technology, 2005. (in ChineseLi Pengmei, Xiong Zuhong, Wang Tiejun, et al. Biomasswith English abstract)gasificasion in a fluidized bed to produce hydrogen rich[15]廖艳芬,王树荣,骆仲泱,等.纤维素快速热裂解试验gas[J]. Acta Energiae Solaris Sinica, 2003, 24(6): 758- 764.研究及分析[J].浙江大学学报:工学版,2003, 37(5):(in Chinese with English abstrac)582- 601.[25]吕鹏梅,熊祖鸿,常杰,等.生物质催化气化制取富氢LiYanfen, Wang Shurong, Luo Zhongyang, et al燃气的研究[].环境污染治理技术与设备, 2003, 4(11):Research on cellulose rapid pyrolysis[J]. Journal of Zhejiang31- 34.University: Engineering Science, 2003, 37(5): 582 - -601. (inLu Pengmei, Xiong Zuhong, Chang Jie, et al. Potential ofhydrogen production from biomass catalytic gasification[J].[16] 许燕萍,谢祖彬,朱建国,等.制炭温度对玉米和小麦生Techniques and Equipment for Environmental Pollution物质炭理化性质的影响[J].土壤,2013, 45(1): 73-78.Control, 2003, 4(11): 31- 34. (in Chinese with EnglishXu Yanping, Xie Zubin, Zhu Jianguo, et al. Effects ofpyrolysis temperature on physical and chemical properties of[26]郭平,王观竹,许梦,等.不同热解温度下生物质废弃物corn biochar and wheat biochar[J]. Soils, 2013, 45(1): 73-制备的生物质炭组成及结构特征[].吉林大学学报:理学78. (in Chinese with English abstract)版,2014, 52(4): 855-860.222农业工程学报http://www.tcsae. org)2015年Guo Ping, Wang Guanzhu, Xu Meng, et al. Structure andbagasses-based biochar[J]. Chinese Journal of Tropicalcomposition characteristics of biochars derived from biomassCrops, 2014, 35(3): 595 - 602. (in Chinese with Englishwastes at different pyrolysis temperatures[J]. Journal of Jilinabstract)University: Science Edition, 2014, 52(4): 855 一860. (in28] 李飞跃,谢越,石磊,等.稻壳生物质炭对水中氨氮的吸Chinese with Engish abstract)附[D]环境工程学报,2015, 9(3): 1221- 1226.[27]俞花美,陈淼,邓惠,等蔗渣基生物质炭的制备、表征Li Feiyue, Xie Yue, Shi Lei, et al. Adsorption of ammoni及吸附性能[J].热带作物学报,2014, 35(3); 595 - 602.nitrogen in wastewater using rice husk derived biochar[J].Yu Huamei, Chen Miao, Deng Hui, et al. Preparation,Chinese Journal of Environmental Engineering, 2015, 9(3):characterization andadsorption performance of1221 - 1226. (in Chinese with English abstract)Biomass continuous pyrolysis characteristics on shaftlessscrew conveying reactorWang Mingfeng, Wu Yujian, Jiang Enchen*, Chen Xiaokun(College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China)Abstract: Technology of continuous pyrolysis is an effective method of disposing biomass, and the shaftless-screw-conveyingpyrolysis reactor, which is a kind of device with great development prospects, can not only reduce the weight of the conveyingmechanical components, but also provide effective space for the removal of volatile products. At present, there were fewresearches on the biomass continuous pyrolysis characteristics with the shaftless screw conveying reactor. So, the continuouspyrolysis of rice husk, peanut shell and cassava stalk was investigated on the shafless-screw-conveying reactor, and theproduct distribution, the pyrolysis gas components and the pyrolytic charcoal characteristics of the 3 biomasses at differentpyrolysis temperatures were analyzed. The pyrolysis characteristics were compared with the existing pyrolysis technology, andthe material adaptability of the reactor was discussed. This paper provided a theoretical basis for the determination of theprocess parameters of biomass continuous pyrolysis and the utilization of pyrolysis products of different biomass materials.The results showed that the distribution of pyrolysis products was consistent with other pyrolysis reactors. With the increase ofpyrolysis temperature, the charcoal yield decreased gradually, the gas yield increased, and the liquid yield increased firstly andthen decreased, which reached the maximum at 450C. The maximum liquid yield of rice husk, peanut shell and cassava stalkwas 35.24%, 33.04% and 31.94% respectively. The gas yield and liquid yield presented a competitive relationship. Fordifferent bio-materials, the order of the charcoal yield from high to low was: rice husk > peanut shell > cassava stalk, the liquidyield from high to low was: rice husk > peanut shell > cassava stalk, and there were contrary rules between the gas yield andthe liquid yield. The pyrolysis gas was mainly composed of CO2, CH4, H2, C2H4 and CO and the gas component content wasinfluenced by temperature greatly. With the increase of reacting temperature, the content of the combustible gas rose, andnon-combustible gas components declined. The relative content of combustible gas in pyrolysis gas reached 75% at reactiontemperature 650C. Different bio-materials had litte effect on the composition and content of the gas. The industrial analysisresults of the pyrolysis carbon were related to that of the raw materials. With the pyrolysis temperature increasing, the volatilecontent of the pyrolysis charcoal decreased gradually, and the ash and the fixed charcoal content increased. There weredifferences of the functional groups among different kinds of charcoals, the surface functional groups of peanut shell charcoalwas more abundant than that of rice husk charcoal. In the 3 kinds of charcoals, the highest contents of volatile, ash and fixedcarbon were obtained from cassava stalk charcoal, rice husk charcoal and peanut shell charcoal respectively. The structurecharacteristics of raw material had a greater influence on the surface morphology of carbon. The surface functional groups oflow-temperature-pyrolysis charcoal were very rich, the type of the surface functional groups reduced gradually with thepyrolysis temperature increasing. The surface structure of biomass materials continued to be destroyed, and pore structureappeared when the pyrolysis temperature increased. The structure characteristics of raw material had a significant influence onthe surface morphology of carbon, and the surface pore structure of peanut shell charcoal and cassava stalk charcoal was morethan rice husk charcoal.Key words: biomass; pyrolysis; straw; shaftless screw conveying reactor; product distribution; pyrolysis gas components;characteristics of pyrolytic charcoal

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。