EVALUATION OF WATER AND SEDIMENT QUALITIES AT RIVER MOUTHS IN THE HAIHE RIVER SYSTEM EVALUATION OF WATER AND SEDIMENT QUALITIES AT RIVER MOUTHS IN THE HAIHE RIVER SYSTEM

EVALUATION OF WATER AND SEDIMENT QUALITIES AT RIVER MOUTHS IN THE HAIHE RIVER SYSTEM

  • 期刊名字:国际泥沙研究(英文版)
  • 文件大小:
  • 论文作者:Cheng LIU,Zhaoyin WANG,Yun HE,
  • 作者单位:International Research and Training Center on Erosion and Sedimentation,Dept. Of Hydraulic Engineering,Senior Engineer
  • 更新时间:2023-04-19
  • 下载次数:
论文简介

Water and sediment qualities are studied by analyzing samples taking from the mouths of the Haihe, Duliujian, New Ziya and Beipai rivers in the Haihe river basin in north China in 2005 and 2001, in order to find the changes of water and sediment pollutions. The concentrations of heavy metals, arsenic, total nitrogen (TN) and total phosphorus (TP) are analyzed and results have been compared for the two times. The in-situ measurement for Dissolved Oxygen (DO) and Sediment Oxygen Demand (SOD) rates were carried at the Haihe and Duliujian river mouths in 2006. The results show that the waters of the 4 river mouths are still seriously polluted, though much improved in the case of the Haihe and Duliujian rivers. The main pollutants are TP and TN in the New Ziya and Beipai rivers and mercury (Hg) at all 4 river mouths. Compared with those in 2001, the concentrations of almost all metals and arsenic in the 4 river mouths have decreased. Water quality at Haihe and Duliujian shows an improving trend, while the water quality at Beipai is similar to that of 2001. In contrast, water at the New Ziya river mouth is more severely polluted. The sediments in the 4 river mouths are not seriously polluted by heavy metals but are polluted by nitrogen and phosphorus. Most of the pollutant contents in the sediments show little change between 2001 and 2005. The in-situ DO and SOD measurement shows that the waters at the Haihe river mouth is in the state of oxygen depletion, and SOD is important consumer of DO at the river mouths. The overall analysis shows that increasing water pollution and eutrophication in waters far from cities are ongoing causes of concern.

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。