基于本体的VSM在兴趣型学习社区分组中的应用 基于本体的VSM在兴趣型学习社区分组中的应用

基于本体的VSM在兴趣型学习社区分组中的应用

  • 期刊名字:同济大学学报(自然科学版)
  • 文件大小:
  • 论文作者:程艳,许维胜,赵斐,何一文
  • 作者单位:同济大学,江西师范大学
  • 更新时间:2022-04-06
  • 下载次数:
论文简介

采用语义网络技术,提出了基于本体的向量空间模型(VSM),计算学习者的兴趣向量,克服了传统的VSM有术语间语义相关性被忽略的不足,提高了兴趣相似性比较的精确程度,同时提出了一种基于学习者兴趣相似匹配度和学习者兴趣匹配浓度的学习社区自组织分组算法.针对模型使用本体中的概念构造向量空间表现出的巨大维数,运用概念索引降维法对兴趣特征矩阵进行合理降维,大大降低了计算的复杂性.最后通过应用案例验证分析了该模型算法具有较高的分组效率和良好的扩展性.

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。