基于情感关键句抽取的情感分类研究 基于情感关键句抽取的情感分类研究

基于情感关键句抽取的情感分类研究

  • 期刊名字:计算机研究与发展
  • 文件大小:
  • 论文作者:林政,谭松波,程学旗
  • 作者单位:中国科学院计算技术研究所,中国科学院大学
  • 更新时间:2022-04-06
  • 下载次数:
论文简介

情感分析需要解决的一个重要问题是判断一篇文档的极性是正面的还是负面的.情感分类的正确率很难达到普通文本分类的水平,因为情感分类更难更复杂.在判断文档的情感极性时,不同的句子具有不同的情感贡献度,所以,对整篇文档的关键句和细节句进行区分将有助于提高情感分类的性能.关键句通常简短且具有判别性,而细节描述句通常复杂多样且容易引入歧义.在关键句抽取算法中,考虑3类属性:情感属性、位置属性和关键词属性.为了更好地利用关键句和细节句之间的差异性和互补性,将抽取的关键句分别用于有监督的和半监督的情感分类.在有监督情感分类中,采用的是分类器融合的方法;在半监督情感分类中,采用的是Co-training算法.在8个领域上进行实验,结果表明所提方法性能明显优于Baseline,从而证明情感关键句抽取算法是有效的.

论文截图
版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。