加拿大到2050年的能源效率潜力Energy Efficiency Potential in Canada to 2050
- 资料类别:
- 资料大小:
- 资料编号:
- 资料状态:
- 更新时间:2021-09-20
- 下载次数:次
加拿大能源系统未开发的节能潜力巨大。当前政策,结合额外的经济和技术上可行的能源效率投资和措施,最终平均每年可节省1.9%的能源到2050年。加拿大的能源需求正在增长加拿大是世界上能源最密集的经济体之一,因为它的面积大,温度低气候、生活水平高,能源产业不断扩大。能源需求增长过去15年平均每年增长0.8%,预计这一增长速度将继续下去在当前策略场景下,假定没有新策略或策略更改已经颁布了。在这种情况下,一次能源总需求(不包括化石燃料统计差异)从2016年的2.92亿吨石油当量(Mtoe)增长到2050的364个脚趾和来自化石燃料燃烧的二氧化碳(CO)排放相似弹道。用于化石燃料开采和电力部门的天然气是主要驱动力能源需求和最终能源需求预计将在所有最终用途部门适度增长除了运输。如果没有执行最低能源性能标准的政策已经实现了节能(MEPS)和建筑物标签方案;自愿方案和其他赠款工业部门的激励措施;以及运输业的燃油经济性标准。综合来看,在现行政策下,石油和天然气燃料占总节量的近70%情景:石油节约特别影响运输,而天然气节约则均匀地分布在其他经济部门。能源效率最大化导致长期能源需求下降能源效率案例挖掘了所有行业经济上可行的效率潜力纳入泛加拿大清洁增长框架的碳定价安排以及气候变化。这种替代方案中的能源效率措施有可能到2050年,一次能源和最终能源需求都将保持在稳步下降的轨道上,尽管增加经济活动。确定的潜在节约可能通过以下方式减少能源需求:到2050年,比目前的政策情景低约1亿吨油当量——超过总量的三分之一2016年一次能源需求(TPED)。最大的节能是建筑(28%),其次是运输(25%)、油气开采(21%)和工业(12%)。电力部门相比之下,进一步提高能效的潜力更为有限。建筑业在提高能源效率方面潜力最大提高能源效率的政策措施可以降低住宅的能源需求到2050年,服务建筑将超过1400万吨油当量。空间供暖的影响最大,在能源效率情况下,占累计节省5亿吨油气的70%以上与当前策略方案相比。“净零能量就绪”(NZER)建筑规范新的建筑,以及更严格的现有法规,是节能高效空间加热的主要催化剂:改进建筑围护结构并转换为电热泵。到2050年,加拿大新建住宅建筑的空间采暖能耗强度降低85%。提高能源效率将对居民的天然气需求产生最大的影响同时也减少了服务业的石油消费。电力需求下降将是部分原因然而,随着电力在建筑部门能源中所占份额的增加,电力供应的增加抵消了这一影响在能源效率的情况下,需求在2050年上升到66%。
The Canadian energy system’s untapped energy efficiency savings potential is great. Current policies, combined with additional economically and technically feasible energy efficiency investments and measures, could deliver final energy savings of 1.9% per year on average through 2050. Canada’s energy needs are growing Canada is one of the world’s most energy-intensive economies owing to its large size, cold climate, high standard of living and expanding energy industry. Energy demand has grown at 0.8% per year on average for the past 15 years, and this rate of growth is projected to continue under the Current Policies Scenario, which assumes no new policies or changes to policies already enacted. Under this scenario, total primary energy demand (excluding fossil fuel statistical differences) grows from 292 million tonnes of oil equivalent (Mtoe) in 2016 to 364 Mtoe in 2050 and carbon dioxide (CO₂) emissions from fossil fuel combustion follow a similar trajectory. Gas used in fossil fuel extraction and in the power sector is the main driver of primary energy demand, and final energy demand is expected to grow moderately in all end-use sectors except transport. Growth in the Current Policies Scenario would have been higher without the energy savings already achieved by policies enforcing minimum energy performance standards (MEPS) and labelling programmes in buildings; voluntary programmes and other grants and incentives in the industry sector; and fuel economy standards in transport. Taken together, oiland gas-based fuels account for almost 70% of total energy saved under the Current Policies Scenario: oil savings affect transport specifically, while gas savings are spread evenly across the other sectors of the economy. Maximising energy efficiency leads to declining long-term energy demand The Energy Efficiency Case taps into economically viable efficiency potentials in all sectors and incorporates the carbon pricing arrangement of the Pan-Canadian Framework on Clean Growth and Climate Change. Energy efficiency measures in this alternative scenario have the potential to keep both primary and final energy demand on a steadily declining trajectory to 2050, despite increasing economic activity. The potential savings identified could reduce energy demand by around 100 Mtoe below the Current Policies Scenario by 2050 – more than one-third of total primary energy demand (TPED) in 2016. The greatest energy savings would be in buildings (28%), followed by transport (25%), oil and gas extraction (21%) and industry (12%). The power sector’s potential for additional energy efficiency improvements are more limited in comparison. Buildings sector has greatest potential for energy efficiency gains Policies and measures to maximise energy efficiency could reduce energy demand of residential and services buildings by over 14 Mtoe in 2050. Space heating has the greatest impact, accounting for over 70% of the cumulative savings of 500 Mtoe in the Energy Efficiency Case compared with the Current Policies Scenario. “Net-zero energy ready” (NZER) building codes for new buildings, and more stringent codes for existing ones, are the primary catalysts for energyefficient space heating: improving building envelopes and switching to electric heat pumps would cut the space heating energy intensity of new residential buildings in Canada by 85% by 2050. Enhanced energy efficiency would have the greatest effect on residential gas demand, and would also cut oil consumption in the services sector. Falling electricity demand would be partially offset by increasing electrification, however, as the share of electricity in buildings sector energy demand rises to 66% in 2050 in the Energy Efficiency Case.
-
化学工程手册(第三版套装5册第1卷2卷3卷4卷5卷)袁渭康 王静康 费维扬 欧阳平凯 著 2021-09-20
-
石油化工自动控制设计手册(第四版) 黄步余 化工出版社 2020年 2021-09-20
-
化工过程模拟实训——Aspen Plus教程(第二版)孙兰义 化学工业出版社 2017年 2021-09-20
-
化工装置实用操作技术指南 韩文光2001年化学工业出版社 2021-09-20
-
HAZOP分析方法及实践 粟镇宇 化学工业出版社2018年 2021-09-20
-
工业除尘设备设计手册 张殿印 申丽 化工出版社 2012年 2021-09-20
-
回转窑(设计、使用与维修)沈阳铝镁设计院、长沙有色冶金设计院共同编写 2021-09-20
-
加拿大煤炭开采Coal Mining in Canada 2021-09-20
-
化工节能技术手册 王文堂 2006年化学工业出版社 2021-09-20
-
年终总结新年计划工作汇报PPT模板 2021-09-20
